90 research outputs found
Recommended from our members
Strongly coupled magnon-phonon dynamics in a single nanomagnet.
Polaritons are widely investigated quasiparticles with fundamental and technological significance due to their unique properties. They have been studied most extensively in semiconductors when photons interact with various elementary excitations. However, other strongly coupled excitations demonstrate similar dynamics. Specifically, when magnon and phonon modes are coupled, a hybridized magnon-phonon quasiparticle can form. Here, we report on the direct observation of coupled magnon-phonon dynamics within a single thin nickel nanomagnet. We develop an analytic description to model the dynamics in two dimensions, enabling us to isolate the parameters influencing the frequency splitting. Furthermore, we demonstrate tuning of the magnon-phonon interaction into the strong coupling regime via the orientation of the applied magnetic field
Triangular Cross-Section Beam Splitters in Silicon Carbide for Quantum Information Processing
Triangular cross-section color center photonics in silicon carbide is a
leading candidate for scalable implementation of quantum hardware. Within this
geometry, we model low-loss beam splitters for applications in key quantum
optical operations such as entanglement and single-photon interferometry. We
consider triangular cross-section single-mode waveguides for the design of a
directional coupler. We optimize parameters for a 50:50 beam splitter. Finally,
we test the experimental feasibility of the designs by fabricating triangular
waveguides in an ion beam etching process and identify suitable designs for
short-term implementation
Recommended from our members
Triangular cross-section beam splitters in silicon carbide for quantum information processing
Triangular cross-section color center photonics in silicon carbide is a leading candidate for scalable implementation of quantum hardware. Within this geometry, we model low-loss beam splitters for applications in key quantum optical operations such as entanglement and single-photon interferometry. We consider triangular cross-section single-mode waveguides for the design of a directional coupler. We optimize parameters for a 50:50 beam splitter. Finally, we test the experimental feasibility of the designs by fabricating triangular waveguides in an ion beam etching process and identify suitable designs for short-term implementation
Video summarization by group scoring
In this paper a new model for user-centered video summarization is presented. Involvement of more than one expert in generating the final video summary should be regarded as the main use case for this algorithm. This approach consists of three major steps. First, the video frames are scored by a group of operators. Next, these assigned scores are averaged to produce a singular value for each frame and lastly, the highest scored video frames alongside the corresponding audio and textual contents are extracted to be inserted into the summary. The effectiveness of this approach has been evaluated by comparing the video summaries generated by this system against the results from a number of automatic summarization tools that use different modalities for abstraction
Experimental characterization of photoemission from plasmonic nanogroove arrays
Metal photocathodes are an important source of high-brightness electron
beams, ubiquitous in the operation of both large-scale accelerators and
table-top microscopes. When the surface of a metal is nano-engineered with
patterns on the order of the optical wavelength, it can lead to the excitation
and confinement of surface plasmon polariton waves which drive nonlinear
photoemission. In this work, we aim to evaluate gold plasmonic nanogrooves as a
concept for producing bright electron beams for accelerators via nonlinear
photoemission. We do this by first comparing their optical properties to
numerical calculations from first principles to confirm our ability to
fabricate these nanoscale structures. Their nonlinear photoemission yield is
found by measuring emitted photocurrent as the intensity of their driving laser
is varied. Finally, the mean transverse energy of this electron source is found
using the solenoid scan technique. Our data demonstrate the ability of these
cathodes to provide a tenfold enhancement in the efficiency of photoemission
over flat metals driven with a linear process. We find that these cathodes are
robust and capable of reaching sustained average currents over 100 nA at
optical intensities larger than 2 GW/cm with no degradation of performance.
The emittance of the generated beam is found to be highly asymmetric, a fact we
can explain with calculations involving the also asymmetric roughness of the
patterned surface. These results demonstrate the use of nano-engineered
surfaces as enhanced photocathodes, providing a robust, air-stable source of
high average current electron beams with great potential for industrial and
scientific applications.Comment: 9 pages, 9 figure
Vortex circulation patterns in planar microdisk arrays
We report a magnetic X-ray microscopy study of the pattern formation of circulation in arrays of magnetic vortices ordered in a hexagonal and a honeycomb lattice. In the honeycomb lattice, we observe at remanence an ordered phase of alternating circulations, whereas in the hexagonal lattice, small regions of alternating lines form. A variation in the edge-to-edge distance shows that the size of those regions scales with the magnetostatic interaction. Micromagnetic simulations reveal that the patterns result from the formation of flux closure states during the nucleation process
- …