90 research outputs found

    Triangular Cross-Section Beam Splitters in Silicon Carbide for Quantum Information Processing

    Full text link
    Triangular cross-section color center photonics in silicon carbide is a leading candidate for scalable implementation of quantum hardware. Within this geometry, we model low-loss beam splitters for applications in key quantum optical operations such as entanglement and single-photon interferometry. We consider triangular cross-section single-mode waveguides for the design of a directional coupler. We optimize parameters for a 50:50 beam splitter. Finally, we test the experimental feasibility of the designs by fabricating triangular waveguides in an ion beam etching process and identify suitable designs for short-term implementation

    Video summarization by group scoring

    Get PDF
    In this paper a new model for user-centered video summarization is presented. Involvement of more than one expert in generating the final video summary should be regarded as the main use case for this algorithm. This approach consists of three major steps. First, the video frames are scored by a group of operators. Next, these assigned scores are averaged to produce a singular value for each frame and lastly, the highest scored video frames alongside the corresponding audio and textual contents are extracted to be inserted into the summary. The effectiveness of this approach has been evaluated by comparing the video summaries generated by this system against the results from a number of automatic summarization tools that use different modalities for abstraction

    Experimental characterization of photoemission from plasmonic nanogroove arrays

    Full text link
    Metal photocathodes are an important source of high-brightness electron beams, ubiquitous in the operation of both large-scale accelerators and table-top microscopes. When the surface of a metal is nano-engineered with patterns on the order of the optical wavelength, it can lead to the excitation and confinement of surface plasmon polariton waves which drive nonlinear photoemission. In this work, we aim to evaluate gold plasmonic nanogrooves as a concept for producing bright electron beams for accelerators via nonlinear photoemission. We do this by first comparing their optical properties to numerical calculations from first principles to confirm our ability to fabricate these nanoscale structures. Their nonlinear photoemission yield is found by measuring emitted photocurrent as the intensity of their driving laser is varied. Finally, the mean transverse energy of this electron source is found using the solenoid scan technique. Our data demonstrate the ability of these cathodes to provide a tenfold enhancement in the efficiency of photoemission over flat metals driven with a linear process. We find that these cathodes are robust and capable of reaching sustained average currents over 100 nA at optical intensities larger than 2 GW/cm2^2 with no degradation of performance. The emittance of the generated beam is found to be highly asymmetric, a fact we can explain with calculations involving the also asymmetric roughness of the patterned surface. These results demonstrate the use of nano-engineered surfaces as enhanced photocathodes, providing a robust, air-stable source of high average current electron beams with great potential for industrial and scientific applications.Comment: 9 pages, 9 figure

    Vortex circulation patterns in planar microdisk arrays

    Get PDF
    We report a magnetic X-ray microscopy study of the pattern formation of circulation in arrays of magnetic vortices ordered in a hexagonal and a honeycomb lattice. In the honeycomb lattice, we observe at remanence an ordered phase of alternating circulations, whereas in the hexagonal lattice, small regions of alternating lines form. A variation in the edge-to-edge distance shows that the size of those regions scales with the magnetostatic interaction. Micromagnetic simulations reveal that the patterns result from the formation of flux closure states during the nucleation process
    • …
    corecore