1,232 research outputs found

    Inductively coupled plasma mass spectrometer with axial field in a quadrupole reaction cell

    Get PDF
    AbstractA novel reaction cell for ICP-MS with an electric field provided inside the quadrupole along its axis is described. The field is implemented via a DC bias applied to additional auxiliary electrodes inserted between the rods of the quadrupole. The field reduces the settling time of the pressurized quadrupole when its mass bandpass is dynamically tuned. It also improves the transmission of analyte ions. It is shown that for the pressurized cell with the field activated, the recovery time for a change in quadrupole operating parameters is reduced to <4 ms, which allows fast tuning of the mass bandpass in concert with and at the speed of the analyzing quadrupole. When the cell is operated with ammonia, the field reduces ion-ammonia cluster formation, further enhancing the transmission of atomic ions that have a high cluster formation rate. Ni·(NH3)n+ cluster formation in a cell operated with a wide bandpass (i.e., Ni+ precursors are stable in the cell) is shown to be dependent on the axial field strength. Clusters at n = 2–4 can be suppressed by 9, 1200, and >610 times, respectively. The use of a retarding axial field for in-situ energy discrimination against cluster and polyatomic ions is shown. When the cell is pressurized with O2 for suppression of 129Xe+, the formation of 127IH2+ by reactions with gas impurities limits the detection of 129I to isotopic abundance of ∼10−6. In-cell energy discrimination against 127IH2+ utilizing a retarding axial field is shown to reduce the abundance of the background at m/z = 129 to ca. 3 × 10−8 of the 127I+ signal. In-cell energy discrimination against 127IH2+ is shown to cause less I+ loss than a post-cell potential energy barrier for the same degree of 127IH2+ suppression

    Video Manipulation Techniques for the Protection of Privacy in Remote Presence Systems

    Full text link
    Systems that give control of a mobile robot to a remote user raise privacy concerns about what the remote user can see and do through the robot. We aim to preserve some of that privacy by manipulating the video data that the remote user sees. Through two user studies, we explore the effectiveness of different video manipulation techniques at providing different types of privacy. We simultaneously examine task performance in the presence of privacy protection. In the first study, participants were asked to watch a video captured by a robot exploring an office environment and to complete a series of observational tasks under differing video manipulation conditions. Our results show that using manipulations of the video stream can lead to fewer privacy violations for different privacy types. Through a second user study, it was demonstrated that these privacy-protecting techniques were effective without diminishing the task performance of the remote user.Comment: 14 pages, 8 figure

    Imperfect Detectors in Linear Optical Quantum Computers

    Full text link
    We discuss the effects of imperfect photon detectors suffering from loss and noise on the reliability of linear optical quantum computers. We show that for a given detector efficiency, there is a maximum achievable success probability, and that increasing the number of ancillary photons and detectors used for one controlled sign flip gate beyond a critical point will decrease the probability that the computer will function correctly. We have also performed simulations of some small logic gates and estimate the efficiency and noise levels required for the linear optical quantum computer to function properly.Comment: 13 pages, 5 figure

    Experimental Investigation of Rotorcraft Outwash in Ground Effect

    Get PDF
    The wake characteristics of a rotorcraft are affected by the proximity of a rotor to the ground surface, especially during hover. Ground effect is encountered when the rotor disk is within a distance of a few rotor radii above the ground surface and results in an increase in thrust for a given power relative to that same power condition with the rotor out of ground effect. Although this phenomenon has been highly documented and observed since the beginning of the helicopter age, there is still a relatively little amount of flow-field data existing to help understand its features. Joint Army and NASA testing was conducted at NASA Langley Research Center using a powered rotorcraft model in hover at various rotor heights and thrust conditions in order to contribute to the complete outwash data set. The measured data included outwash velocities and directions, rotor loads, fuselage loads, and ground pressures. The researchers observed a linear relationship between rotor height and percent download on the fuselage, peak mean outwash velocities occurring at radial stations between 1.7 and 1.8 r/R regardless of rotor height, and the measurement azimuthal dependence of the outwash profile for a model incorporating a fuselage. Comparisons to phase-locked PIV data showed similar contours but a more contracted wake boundary for the PIV data. This paper describes the test setup and presents some of the averaged results

    Health Vulnerability Model for Latinx Sexual and Gender Minorities: Typologies with Socioeconomic Stability, Health Care Access, and Social Characteristics Indicators

    Get PDF
    Vulnerability can undermine positive health outcomes and challenge healthcare services access. However, to date, vulnerable populations research has been limited by overly broad definitions, lack of clear indicators, and failure to explore subtypes of vulnerability. Informed by literature and theory, this analysis used a specific operationalization of health vulnerability to identify typologies among a sample of Latinx sexual and gender minorities. We analyzed baseline data from Latinx sexual and gender minorities (N = 186) recruited for a community-based HIV intervention. We performed latent class analysis to operationalize vulnerability using eight socioeconomic stability, health care access, and social characteristics indicators. We identified three typologies of vulnerability from our sample: Low Education and High Social Support (63.4% of sample), High Education and Year-round Employment (18.8%), and High Education and High Discrimination (17.7%). Using specific indicators produced more nuanced vulnerability typologies which, after further testing, can assist in informing tailored health promotion interventions

    Barriers to HIV Testing Within a Sample of Spanish-speaking Latinx Gay, Bisexual, and Other Men Who Have Sex with Men: Implications for HIV Prevention and Care

    Get PDF
    Gay, bisexual, and other men who have sex with men (GBMSM) have higher rates of HIV infection compared to the general population in the United States, and the infection rate is growing among Latinx GBMSM, compared to a decline in most other demographic subgroups. Uptake of pre-exposure prophylaxis (PrEP), a biomedical strategy designed to reduce HIV transmission, is very low among Latinx GBMSM. HIV testing is a critical first step in the HIV prevention and care continua. We analyzed data from a community-based sample of Latinx GBMSM in the southeastern United States to identify the most common HIV testing barriers and the factors associated with barriers. The five most commonly reported HIV testing barriers included not knowing where to get tested, not having health insurance, fear of being HIV positive, practicing safer sex and perceiving not needing to be tested, and not being recommended to get tested. Using multivariable logistic regression modeling, speaking only Spanish, being unemployed, and adhering to traditional notions of masculinity were associated with increased barriers to HIV testing. We recommend that interventions to increase HIV testing among Latinx GBMSM be provided in Spanish and use culturally congruent messaging, be accessible to those who are unemployed, and incorporate positive risk-reducing aspects of masculinity

    Mechanisms of Active Aerodynamic Load Reduction on a Rotorcraft Fuselage With Rotor Effects

    Get PDF
    The reduction of the aerodynamic load that acts on a generic rotorcraft fuselage by the application of active flow control was investigated in a wind tunnel test conducted on an approximately 1/3-scale powered rotorcraft model simulating forward flight. The aerodynamic mechanisms that make these reductions, in both the drag and the download, possible were examined in detail through the use of the measured surface pressure distribution on the fuselage, velocity field measurements made in the wake directly behind the ramp of the fuselage and computational simulations. The fuselage tested was the ROBIN-mod7, which was equipped with a series of eight slots located on the ramp section through which flow control excitation was introduced. These slots were arranged in a U-shaped pattern located slightly downstream of the baseline separation line and parallel to it. The flow control excitation took the form of either synthetic jets, also known as zero-net-mass-flux blowing, and steady blowing. The same set of slots were used for both types of excitation. The differences between the two excitation types and between flow control excitation from different combinations of slots were examined. The flow control is shown to alter the size of the wake and its trajectory relative to the ramp and the tailboom and it is these changes to the wake that result in a reduction in the aerodynamic load

    Promoting Community and Population Health in Public Health and Medicine: A Stepwise Guide to Initiating and Conducting Community-engaged Research

    Full text link
    Various methods, approaches, and strategies designed to understand and reduce health disparities, increase health equity, and promote community and population health have emerged within public health and medicine. One such approach is community-engaged research. While the literature describing the theory, principles, and rationale underlying community engagement is broad, few models or frameworks exist to guide its implementation. We abstracted, analyzed, and interpreted data from existing project documentation including proposal documents, project-specific logic models, research team and partnership meeting notes, and other materials from 24 funded community-engaged research projects conducted over the past 17 years. We developed a 15-step process designed to guide the community-engaged research process. The process includes steps such as: networking and partnership establishment and expansion; building and maintaining trust; identifying health priorities; conducting background research, prioritizing “what to take on”; building consensus, identifying research goals, and developing research questions; developing a conceptual model; formulating a study design; developing an analysis plan; implementing the study; collecting and analyzing data; reviewing and interpreting results; and disseminating and translating findings broadly through multiple channels. Here, we outline and describe each of these steps

    Investigating the Interplay between Glucose Regulation, Neural Activity, and Motivation: A Novel Approach Utilizing Vibration Stimulation

    Get PDF
    This research explores the intricate relationship between glucose regulation, neural activity, and motivation in key brain regions, including the hypothalamus, basal ganglia, ventral tegmental area (VTA), and nucleus accumbens (NA). We aim to unravel the potential relationship of these factors on dopamine (DA) release and the broader implications for mental health, glucose regulation, well-being, and overall health. Our innovative approach involves using a chair that causes heterodyned whole-body vibration designed to stimulate DA release from the VTA and NA, areas associated with motivation and rewards

    Horizontal transfer of the blaNDM-1 gene to Pseudomonas aeruginosa and Acinetobacter baumannii in biofilms

    Get PDF
    Horizontal gene transfer has contributed to the global spread of the blaNDM-1 gene. Multiple studies have demonstrated plasmid transfer of blaNDM-1 between Gram-negative bacteria, primarily Enterobacteriaceae species, but conjugational transfer of natural blaNDM-1 plasmids from Enterobacteriaceae into Pseudomonas aeruginosa and Acinetobacter baumannii has not previously been shown. As P. aeruginosa and A. baumannii are both typically strong biofilm-formers, transfer of natural blaNDM-1 plasmids could potentially occur more readily in this environment. To determine whether natural blaNDM-1 plasmids could transfer to P. aeruginosa or A. baumannii in biofilms, three clinical and environmental Enterobacteriaceae strains carrying NDM-1-encoding plasmids of different incompatibility types were mated with E. coli J53, producing E. coli J53- blaNDM-1 transconjugants. Subsequently, dual-species biofilms were created using the E. coli J53 transconjugants as plasmid donors and either P. aeruginosa or A. baumannii as recipients. Biofilm transfer of NDM-encoding plasmids to P. aeruginosa and A. baumannii was successful from one and two E. coli J53- blaNDM-1 transconjugants, respectively. This demonstrates the potential for the spread of blaNDM-1, genes to P. aeruginosa and A. baumannii in clinical and environmental settings
    corecore