3,484 research outputs found
Relativistic photoionization cross sections for C II
High resolution measurements of photoionization cross sections for atomic
ions are now being made on synchrotron radiation sources. The recent
measurements by Kjeldsen etal. (1999) showed good agreement between the
observed resonance features and the the theoretical calculations in the close
coupling approximation (Nahar 1995). However, there were several observed
resonances that were missing in the theoretical predictions. The earlier
theoretical calculation was carried out in LS coupling where the relativistic
effects were not included. Present work reports photoionization cross sections
including the relativistic effects in Breit-Pauli R-matrix (BPRM)
approximation. The configuration interaction eigenfunction expansion for the
core ion C III consists of 20 fine structure levels dominated by the
configurations from 1s^22s^2 to 1s^22s3d. Detailed features in the calculated
cross sections exhibit the missing resonances due to fine structure. The
results benchmark the accuracy of BPRM photoionization cross sections as needed
for recent and ongoing experiments.Comment: 13 pages, 3 figure
An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions
We present a new, easy, and elementary proof of Jensen's Theorem on the
uniqueness of infinity harmonic functions. The idea is to pass to a finite
difference equation by taking maximums and minimums over small balls.Comment: 4 pages; comments added, proof simplifie
The Abundance of New Kind of Dark Matter Structures
A new kind of dark matter structures, ultracompact minihalos (UCMHs) was
proposed recently. They would be formed during the radiation dominated epoch if
the large density perturbations are existent. Moreover, if the dark matter is
made up of weakly interacting massive particles, the UCMHs can have effect on
cosmological evolution because of the high density and dark matter annihilation
within them. In this paper, one new parameter is introduced to consider the
contributions of UCMHs due to the dark matter annihilation to the evolution of
cosmology, and we use the current and future CMB observations to obtain the
constraint on the new parameter and then the abundance of UCMHs. The final
results are applicable for a wider range of dark matter parametersComment: 4 pages, 1 tabl
Diffusion as mixing mechanism in granular materials
We present several numerical results on granular mixtures. In particular, we
examine the efficiency of diffusion as a mixing mechanism in these systems. The
collisions are inelastic and to compensate the energy loss, we thermalize the
grains by adding a random force. Starting with a segregated system, we show
that uniform agitation (heating) leads to a uniform mixture of grains of
different sizes. We define a characteristic mixing time, , and
study theoretically and numerically its dependence on other parameters like the
density. We examine a model for bidisperse systems for which we can calculate
some physical quantities. We also examine the effect of a temperature gradient
and demonstrate the appearance of an expected segregation.Comment: 15 eps figures, include
Calculating the mass fraction of primordial black holes
We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation c in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not - this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, Δ, should be used instead as super-horizon modes are damped by a factor k2. We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes
Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits
Observations have established that extremely compact, massive objects are
common in the universe. It is generally accepted that these objects are black
holes. As observations improve, it becomes possible to test this hypothesis in
ever greater detail. In particular, it is or will be possible to measure the
properties of orbits deep in the strong field of a black hole candidate (using
x-ray timing or with gravitational-waves) and to test whether they have the
characteristics of black hole orbits in general relativity. Such measurements
can be used to map the spacetime of a massive compact object, testing whether
the object's multipoles satisfy the strict constraints of the black hole
hypothesis. Such a test requires that we compare against objects with the
``wrong'' multipole structure. In this paper, we present tools for constructing
bumpy black holes: objects that are almost black holes, but that have some
multipoles with the wrong value. The spacetimes which we present are good deep
into the strong field of the object -- we do not use a large r expansion,
except to make contact with weak field intuition. Also, our spacetimes reduce
to the black hole spacetimes of general relativity when the ``bumpiness'' is
set to zero. We propose bumpy black holes as the foundation for a null
experiment: if black hole candidates are the black holes of general relativity,
their bumpiness should be zero. By comparing orbits in a bumpy spacetime with
those of an astrophysical source, observations should be able to test this
hypothesis, stringently testing whether they are the black holes of general
relativity. (Abridged)Comment: 16 pages + 2 appendices + 3 figures. Submitted to PR
Quantum carpet interferometry for trapped atomic Bose-Einstein condensates
We propose an ``interferometric'' scheme for Bose-Einstein condensates using
near-field diffraction. The scheme is based on the phenomenon of intermode
traces or quantum carpets; we show how it may be used in the detection of weak
forces.Comment: 4 figures. Submitted to Phys. Rev.
A first-principles study of oxygen vacancy pinning of domain walls in PbTiO3
We have investigated the interaction of oxygen vacancies and 180-degree
domain walls in tetragonal PbTiO3 using density-functional theory. Our
calculations indicate that the vacancies do have a lower formation energy in
the domain wall than in the bulk, thereby confirming the tendency of these
defects to migrate to, and pin, the domain walls. The pinning energies are
reported for each of the three possible orientations of the original Ti-O-Ti
bonds, and attempts to model the results with simple continuum models are
discussed.Comment: 8 pages, with 3 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/lh_dw/index.htm
Deterministic and stochastic descriptions of gene expression dynamics
A key goal of systems biology is the predictive mathematical description of
gene regulatory circuits. Different approaches are used such as deterministic
and stochastic models, models that describe cell growth and division explicitly
or implicitly etc. Here we consider simple systems of unregulated
(constitutive) gene expression and compare different mathematical descriptions
systematically to obtain insight into the errors that are introduced by various
common approximations such as describing cell growth and division by an
effective protein degradation term. In particular, we show that the population
average of protein content of a cell exhibits a subtle dependence on the
dynamics of growth and division, the specific model for volume growth and the
age structure of the population. Nevertheless, the error made by models with
implicit cell growth and division is quite small. Furthermore, we compare
various models that are partially stochastic to investigate the impact of
different sources of (intrinsic) noise. This comparison indicates that
different sources of noise (protein synthesis, partitioning in cell division)
contribute comparable amounts of noise if protein synthesis is not or only
weakly bursty. If protein synthesis is very bursty, the burstiness is the
dominant noise source, independent of other details of the model. Finally, we
discuss two sources of extrinsic noise: cell-to-cell variations in protein
content due to cells being at different stages in the division cycles, which we
show to be small (for the protein concentration and, surprisingly, also for the
protein copy number per cell) and fluctuations in the growth rate, which can
have a significant impact.Comment: 23 pages, 5 figures; Journal of Statistical physics (2012
Anomalous metamagnetism in the low carrier density Kondo lattice YbRh3Si7
We report complex metamagnetic transitions in single crystals of the new low
carrier Kondo antiferromagnet YbRh3Si7. Electrical transport, magnetization,
and specific heat measurements reveal antiferromagnetic order at T_N = 7.5 K.
Neutron diffraction measurements show that the magnetic ground state of
YbRh3Si7 is a collinear antiferromagnet where the moments are aligned in the ab
plane. With such an ordered state, no metamagnetic transitions are expected
when a magnetic field is applied along the c axis. It is therefore surprising
that high field magnetization, torque, and resistivity measurements with H||c
reveal two metamagnetic transitions at mu_0H_1 = 6.7 T and mu_0H_2 = 21 T. When
the field is tilted away from the c axis, towards the ab plane, both
metamagnetic transitions are shifted to higher fields. The first metamagnetic
transition leads to an abrupt increase in the electrical resistivity, while the
second transition is accompanied by a dramatic reduction in the electrical
resistivity. Thus, the magnetic and electronic degrees of freedom in YbRh3Si7
are strongly coupled. We discuss the origin of the anomalous metamagnetism and
conclude that it is related to competition between crystal electric field
anisotropy and anisotropic exchange interactions.Comment: 23 pages and 4 figures in the main text. 7 pages and 5 figures in the
supplementary materia
- …
