3,484 research outputs found

    Relativistic photoionization cross sections for C II

    Get PDF
    High resolution measurements of photoionization cross sections for atomic ions are now being made on synchrotron radiation sources. The recent measurements by Kjeldsen etal. (1999) showed good agreement between the observed resonance features and the the theoretical calculations in the close coupling approximation (Nahar 1995). However, there were several observed resonances that were missing in the theoretical predictions. The earlier theoretical calculation was carried out in LS coupling where the relativistic effects were not included. Present work reports photoionization cross sections including the relativistic effects in Breit-Pauli R-matrix (BPRM) approximation. The configuration interaction eigenfunction expansion for the core ion C III consists of 20 fine structure levels dominated by the configurations from 1s^22s^2 to 1s^22s3d. Detailed features in the calculated cross sections exhibit the missing resonances due to fine structure. The results benchmark the accuracy of BPRM photoionization cross sections as needed for recent and ongoing experiments.Comment: 13 pages, 3 figure

    An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions

    Get PDF
    We present a new, easy, and elementary proof of Jensen's Theorem on the uniqueness of infinity harmonic functions. The idea is to pass to a finite difference equation by taking maximums and minimums over small balls.Comment: 4 pages; comments added, proof simplifie

    The Abundance of New Kind of Dark Matter Structures

    Full text link
    A new kind of dark matter structures, ultracompact minihalos (UCMHs) was proposed recently. They would be formed during the radiation dominated epoch if the large density perturbations are existent. Moreover, if the dark matter is made up of weakly interacting massive particles, the UCMHs can have effect on cosmological evolution because of the high density and dark matter annihilation within them. In this paper, one new parameter is introduced to consider the contributions of UCMHs due to the dark matter annihilation to the evolution of cosmology, and we use the current and future CMB observations to obtain the constraint on the new parameter and then the abundance of UCMHs. The final results are applicable for a wider range of dark matter parametersComment: 4 pages, 1 tabl

    Diffusion as mixing mechanism in granular materials

    Full text link
    We present several numerical results on granular mixtures. In particular, we examine the efficiency of diffusion as a mixing mechanism in these systems. The collisions are inelastic and to compensate the energy loss, we thermalize the grains by adding a random force. Starting with a segregated system, we show that uniform agitation (heating) leads to a uniform mixture of grains of different sizes. We define a characteristic mixing time, τmix\tau_{mix}, and study theoretically and numerically its dependence on other parameters like the density. We examine a model for bidisperse systems for which we can calculate some physical quantities. We also examine the effect of a temperature gradient and demonstrate the appearance of an expected segregation.Comment: 15 eps figures, include

    Calculating the mass fraction of primordial black holes

    Get PDF
    We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation c in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not - this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, Δ, should be used instead as super-horizon modes are damped by a factor k2. We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes

    Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits

    Full text link
    Observations have established that extremely compact, massive objects are common in the universe. It is generally accepted that these objects are black holes. As observations improve, it becomes possible to test this hypothesis in ever greater detail. In particular, it is or will be possible to measure the properties of orbits deep in the strong field of a black hole candidate (using x-ray timing or with gravitational-waves) and to test whether they have the characteristics of black hole orbits in general relativity. Such measurements can be used to map the spacetime of a massive compact object, testing whether the object's multipoles satisfy the strict constraints of the black hole hypothesis. Such a test requires that we compare against objects with the ``wrong'' multipole structure. In this paper, we present tools for constructing bumpy black holes: objects that are almost black holes, but that have some multipoles with the wrong value. The spacetimes which we present are good deep into the strong field of the object -- we do not use a large r expansion, except to make contact with weak field intuition. Also, our spacetimes reduce to the black hole spacetimes of general relativity when the ``bumpiness'' is set to zero. We propose bumpy black holes as the foundation for a null experiment: if black hole candidates are the black holes of general relativity, their bumpiness should be zero. By comparing orbits in a bumpy spacetime with those of an astrophysical source, observations should be able to test this hypothesis, stringently testing whether they are the black holes of general relativity. (Abridged)Comment: 16 pages + 2 appendices + 3 figures. Submitted to PR

    Quantum carpet interferometry for trapped atomic Bose-Einstein condensates

    Full text link
    We propose an ``interferometric'' scheme for Bose-Einstein condensates using near-field diffraction. The scheme is based on the phenomenon of intermode traces or quantum carpets; we show how it may be used in the detection of weak forces.Comment: 4 figures. Submitted to Phys. Rev.

    A first-principles study of oxygen vacancy pinning of domain walls in PbTiO3

    Full text link
    We have investigated the interaction of oxygen vacancies and 180-degree domain walls in tetragonal PbTiO3 using density-functional theory. Our calculations indicate that the vacancies do have a lower formation energy in the domain wall than in the bulk, thereby confirming the tendency of these defects to migrate to, and pin, the domain walls. The pinning energies are reported for each of the three possible orientations of the original Ti-O-Ti bonds, and attempts to model the results with simple continuum models are discussed.Comment: 8 pages, with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/lh_dw/index.htm

    Deterministic and stochastic descriptions of gene expression dynamics

    Full text link
    A key goal of systems biology is the predictive mathematical description of gene regulatory circuits. Different approaches are used such as deterministic and stochastic models, models that describe cell growth and division explicitly or implicitly etc. Here we consider simple systems of unregulated (constitutive) gene expression and compare different mathematical descriptions systematically to obtain insight into the errors that are introduced by various common approximations such as describing cell growth and division by an effective protein degradation term. In particular, we show that the population average of protein content of a cell exhibits a subtle dependence on the dynamics of growth and division, the specific model for volume growth and the age structure of the population. Nevertheless, the error made by models with implicit cell growth and division is quite small. Furthermore, we compare various models that are partially stochastic to investigate the impact of different sources of (intrinsic) noise. This comparison indicates that different sources of noise (protein synthesis, partitioning in cell division) contribute comparable amounts of noise if protein synthesis is not or only weakly bursty. If protein synthesis is very bursty, the burstiness is the dominant noise source, independent of other details of the model. Finally, we discuss two sources of extrinsic noise: cell-to-cell variations in protein content due to cells being at different stages in the division cycles, which we show to be small (for the protein concentration and, surprisingly, also for the protein copy number per cell) and fluctuations in the growth rate, which can have a significant impact.Comment: 23 pages, 5 figures; Journal of Statistical physics (2012

    Anomalous metamagnetism in the low carrier density Kondo lattice YbRh3Si7

    Full text link
    We report complex metamagnetic transitions in single crystals of the new low carrier Kondo antiferromagnet YbRh3Si7. Electrical transport, magnetization, and specific heat measurements reveal antiferromagnetic order at T_N = 7.5 K. Neutron diffraction measurements show that the magnetic ground state of YbRh3Si7 is a collinear antiferromagnet where the moments are aligned in the ab plane. With such an ordered state, no metamagnetic transitions are expected when a magnetic field is applied along the c axis. It is therefore surprising that high field magnetization, torque, and resistivity measurements with H||c reveal two metamagnetic transitions at mu_0H_1 = 6.7 T and mu_0H_2 = 21 T. When the field is tilted away from the c axis, towards the ab plane, both metamagnetic transitions are shifted to higher fields. The first metamagnetic transition leads to an abrupt increase in the electrical resistivity, while the second transition is accompanied by a dramatic reduction in the electrical resistivity. Thus, the magnetic and electronic degrees of freedom in YbRh3Si7 are strongly coupled. We discuss the origin of the anomalous metamagnetism and conclude that it is related to competition between crystal electric field anisotropy and anisotropic exchange interactions.Comment: 23 pages and 4 figures in the main text. 7 pages and 5 figures in the supplementary materia
    corecore