387 research outputs found

    Jamming II: Edwards' statistical mechanics of random packings of hard spheres

    Full text link
    The problem of finding the most efficient way to pack spheres has an illustrious history, dating back to the crystalline arrays conjectured by Kepler and the random geometries explored by Bernal in the 60's. This problem finds applications spanning from the mathematician's pencil, the processing of granular materials, the jamming and glass transitions, all the way to fruit packing in every grocery. There are presently numerous experiments showing that the loosest way to pack spheres gives a density of ~55% (RLP) while filling all the loose voids results in a maximum density of ~63-64% (RCP). While those values seem robustly true, to this date there is no physical explanation or theoretical prediction for them. Here we show that random packings of monodisperse hard spheres in 3d can pack between the densities 4/(4 + 2 \sqrt 3) or 53.6% and 6/(6 + 2 \sqrt 3) or 63.4%, defining RLP and RCP, respectively. The reason for these limits arises from a statistical picture of jammed states in which the RCP can be interpreted as the ground state of the ensemble of jammed matter with zero compactivity, while the RLP arises in the infinite compactivity limit. We combine an extended statistical mechanics approach 'a la Edwards' (where the role traditionally played by the energy and temperature in thermal systems is substituted by the volume and compactivity) with a constraint on mechanical stability imposed by the isostatic condition. Ultimately, our results lead to a phase diagram that provides a unifying view of the disordered hard sphere packing problem.Comment: 55 pages, 19 figures, C. Song, P. Wang, H. A. Makse, A phase diagram for jammed matter, Nature 453, 629-632 (2008

    Packing of Compressible Granular Materials

    Full text link
    3D Computer simulations and experiments are employed to study random packings of compressible spherical grains under external confining stress. Of particular interest is the rigid ball limit, which we describe as a continuous transition in which the applied stress vanishes as (\phi-\phi_c)^\beta, where \phi is the (solid phase) volume density. This transition coincides with the onset of shear rigidity. The value of \phi_c depends, for example, on whether the grains interact via only normal forces (giving rise to random close packings) or by a combination of normal and friction generated transverse forces (producing random loose packings). In both cases, near the transition, the system's response is controlled by localized force chains. As the stress increases, we characterize the system's evolution in terms of (1) the participation number, (2) the average force distribution, and (3) visualization techniques.Comment: 4 pages, 7 figures, to appear in Phys. Rev. Let

    A first-order phase transition at the random close packing of hard spheres

    Full text link
    Randomly packing spheres of equal size into a container consistently results in a static configuration with a density of ~64%. The ubiquity of random close packing (RCP) rather than the optimal crystalline array at 74% begs the question of the physical law behind this empirically deduced state. Indeed, there is no signature of any macroscopic quantity with a discontinuity associated with the observed packing limit. Here we show that RCP can be interpreted as a manifestation of a thermodynamic singularity, which defines it as the "freezing point" in a first-order phase transition between ordered and disordered packing phases. Despite the athermal nature of granular matter, we show the thermodynamic character of the transition in that it is accompanied by sharp discontinuities in volume and entropy. This occurs at a critical compactivity, which is the intensive variable that plays the role of temperature in granular matter. Our results predict the experimental conditions necessary for the formation of a jammed crystal by calculating an analogue of the "entropy of fusion". This approach is useful since it maps out-of-equilibrium problems in complex systems onto simpler established frameworks in statistical mechanics.Comment: 33 pages, 10 figure

    Numerical model for granular compaction under vertical tapping

    Full text link
    A simple numerical model is used to simulate the effect of vertical taps on a packing of monodisperse hard spheres. Our results are in agreement with an experimantal work done in Chicago and with other previous models, especially concerning the dynamics of the compaction, the influence of the excitation strength on the compaction efficiency, and some ageing effects. The principal asset of the model is that it allows a local analysis of the packings. Vertical and transverse density profiles are used as well as size and volume distributions of the pores. An interesting result concerns the appearance of a vertical gradient in the density profiles during compaction. Furthermore, the volume distribution of the pores suggests that the smallest pores, ranging in size between a tetrahedral and an octahedral site, are not strongly affected by the tapping process, in contrast to the largest pores which are more sensitive to the compaction of the packing.Comment: 8 pages, 15 figures (eps), to be published in Phys. Rev. E. Some corrections have been made, especially in paragraph IV

    Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions

    Full text link
    We evaluate the virial coefficients B_k for k<=10 for hard spheres in dimensions D=2,...,8. Virial coefficients with k even are found to be negative when D>=5. This provides strong evidence that the leading singularity for the virial series lies away from the positive real axis when D>=5. Further analysis provides evidence that negative virial coefficients will be seen for some k>10 for D=4, and there is a distinct possibility that negative virial coefficients will also eventually occur for D=3.Comment: 33 pages, 12 figure

    Galactic-Centre Gamma Rays in CMSSM Dark Matter Scenarios

    Full text link
    We study the production of gamma rays via LSP annihilations in the core of the Galaxy as a possible experimental signature of the constrained minimal supersymmetric extension of the Standard Model (CMSSM), in which supersymmetry-breaking parameters are assumed to be universal at the GUT scale, assuming also that the LSP is the lightest neutralino chi. The part of the CMSSM parameter space that is compatible with the measured astrophysical density of cold dark matter is known to include a stau_1 - chi coannihilation strip, a focus-point strip where chi has an enhanced Higgsino component, and a funnel at large tanb where the annihilation rate is enhanced by the poles of nearby heavy MSSM Higgs bosons, A/H. We calculate the total annihilation rates, the fractions of annihilations into different Standard Model final states and the resulting fluxes of gamma rays for CMSSM scenarios along these strips. We observe that typical annihilation rates are much smaller in the coannihilation strip for tanb = 10 than along the focus-point strip or for tanb = 55, and that the annihilation branching ratios differ greatly between the different dark matter strips. Whereas the current Fermi-LAT data are not sensitive to any of the CMSSM scenarios studied, and the calculated gamma-ray fluxes are probably unobservably low along the coannihilation strip for tanb = 10, we find that substantial portions of the focus-point strips and rapid-annihilation funnel regions could be pressured by several more years of Fermi-LAT data, if understanding of the astrophysical background and/or systematic uncertainties can be improved in parallel.Comment: 33 pages, 12 figures, comments and references added, version to appear in JCA

    USU Teaching Documentation: Dossiers from the Mentoring Program

    Get PDF
    The nation\u27s land grant institutions were founded on the principle of access for the general public to the knowledge gained through research and creative activity fostered in higher education. Central to our access mission is our dedication to teaching and learning that is informed by research and discovery, both of which must result, at least in part, from our engagement with our external constituents. That teaching and learning informs our research and vice versa; our research informs and aids in our teaching mission. This work, compiled by Professors Maria Luisa Spicer-Escalante and Cathy Ferrand Bullock, is focused on how the best, highly informed teaching is accomplished when done in an intentional manner. That intentional process helps the best university educators thoughtfully build their teaching story in an organized manner. Educators think about how they can successfully reach and engage their appropriate student audiences (or mentees), what they hope to accomplish, and how they intend to accomplish their goals. Further, as learning outcomes are identified and established, first-rate methods for course design, content inclusion, and continuous improvement can be outlined. Those of us who follow these intentional principles may then detail our growth and success along the way as teachers in the development of documents that tell our stories. Undoubtedly, the ability to clearly document and articulate that story will help academic personnel add to their tenure and promotion preparation in a very meaningful way. But as or even more important is the opportunity to describe these journeys with all the efforts, large and small, of improving their product in terms of learning outcomes and student growth and success. The nuggets of wisdom compiled by Professors Spicer-Escalante and Bullock, in USU Teaching Documentation: Dossiers from the Mentoring Program, will help teachers across the board from the new lecturer or assistant professor to the experienced professor dive into their teaching programs and find ways to continuously experiment and refine their approaches to our critically important student audiences. Good luck, teach on, and successfully document some of the most important work you all do! Frank Galey Executive Vice President and Provost Utah State University 2019https://digitalcommons.usu.edu/ua_faculty/1000/thumbnail.jp

    Annihilation vs. Decay: Constraining dark matter properties from a gamma-ray detection

    Full text link
    Most proposed dark matter candidates are stable and are produced thermally in the early Universe. However, there is also the possibility of unstable (but long-lived) dark matter, produced thermally or otherwise. We propose a strategy to distinguish between dark matter annihilation and/or decay in the case that a clear signal is detected in gamma-ray observations of Milky Way dwarf spheroidal galaxies with gamma-ray experiments. The sole measurement of the energy spectrum of an indirect signal would render the discrimination between these cases impossible. We show that by examining the dependence of the intensity and energy spectrum on the angular distribution of the emission, the origin could be identified as decay, annihilation, or both. In addition, once the type of signal is established, we show how these measurements could help to extract information about the dark matter properties, including mass, annihilation cross section, lifetime, dominant annihilation and decay channels, and the presence of substructure. Although an application of the approach presented here would likely be feasible with current experiments only for very optimistic dark matter scenarios, the improved sensitivity of upcoming experiments could enable this technique to be used to study a wider range of dark matter models.Comment: 29 pp, 8 figs; replaced to match published version (minor changes and some new references

    HisAK70: Progress towards a vaccine against different forms of leishmaniosis

    Get PDF
    Background: Leishmania major and Leishmania infantum are among the main species that are responsible for cutaneous leishmaniosis (CL) and visceral leishmaniosis (VL), respectively. The leishmanioses represent the second-largest parasitic killer in the world after malaria. Recently, we succeeded in generating a plasmid DNA (pCMV-HISA70m2A) and demonstrated that immunized mice were protected against L. major challenge. The efficacy of the DNA-vaccine was further enhanced by the inclusion of KMP-11 antigen into the antibiotic-free plasmid pVAX1-asd. Methods: Here, we describe the use of a HisAK70 DNA-vaccine encoding seven Leishmania genes (H2A, H2B, H3, H4, A2, KMP11 and HSP70) for vaccination of mice to assess the induction of a resistant phenotype against VL and CL. Results: HisAK70 was successful in vaccinated mice, resulting in a high amount of efficient sterile hepatic granulomas associated with a hepatic parasite burden fully resolved in the VL model; and resulting in 100 % inhibition of parasite visceralization in the CL model. Conclusions: The results suggest that immunization with the HisAK70 DNA-vaccine may provide a rapid, suitable, and efficient vaccination strategy to confer cross-protective immunity against VL and CL.This work was partially supported by grants from the Spanish Ministry of Economy and Competitiveness (AGL2010-17394 and AGL2013-44100R) and PLATESA (P2013/ABI-2906) from the Comunidad de Madrid (Spain).Peer Reviewe

    Pediatric colloid cysts: a multinational, multicenter study. An IFNE-ISPN-ESPN collaboration

    Get PDF
    OBJECTIVE Colloid cysts (CCs) are rare at all ages, and particularly among children. The current literature on pediatric CC is limited, and often included in mixed adult/pediatric series. The goal of this multinational, multicenter study was to combine forces among centers and investigate the clinical course of pediatric CCs. METHODS A multinational, multicenter retrospective study was performed to attain a large sample size, focusing on CC diagnosis in patients younger than 18 years of age. Collected data included clinical presentation, radiological characteristics, treatment, and outcome. RESULTS One hundred thirty-four children with CCs were included. Patient age at diagnosis ranged from 2.4 to 18 years (mean 12.8 ± 3.4 years, median 13.2 years, interquartile range 10.3–15.4 years; 22% were \u3c 10 years of age). Twenty-two cases (16%) were diagnosed incidentally, including 48% of those younger than 10 years of age. Most of the other patients had symptoms related to increased intracranial pressure and hydrocephalus. The average follow-up duration for the entire group was 49.5 ± 45.8 months. Fifty-nine patients were initially followed, of whom 28 were eventually operated on at a mean of 19 ± 32 months later due to cyst growth, increasing hydrocephalus, and/or new symptoms. There was a clear correlation between larger cysts and symptomatology, acuteness of symptoms, hydrocephalus, and need for surgery. Older age was also associated with the need for surgery. One hundred three children (77%) underwent cyst resection, 60% using a purely endoscopic approach. There was 1 death related to acute hydrocephalus at presentation. Ten percent of operated patients had some form of complication, and 7.7% of operated cases required a shunt at some point during follow-up. Functional outcome was good; however, the need for immediate surgery was associated with educational limitations. Twenty operated cases (20%) experienced a recurrence of their CC at a mean of 38 ± 46 months after the primary surgery. The CC recurrence rate was 24% following endoscopic resection and 15% following open resections (p = 0.28). CONCLUSIONS CCs may present in all pediatric age groups, although most that are symptomatic present after the age of 10 years. Incidentally discovered cysts should be closely followed, as many may grow, leading to hydrocephalus and other new symptoms. Presentation of CC may be acute and may cause life-threatening conditions related to hydrocephalus, necessitating urgent treatment. The outcome of treated children with CCs is favorable
    • …
    corecore