140 research outputs found

    A genome-wide association study of self-rated health

    Get PDF
    Self-rated health questions have been proven to be a highly reliable and valid measure of overall health as measured by other indicators in many population groups. It also has been shown to be a very good predictor of mortality, chronic or severe diseases, and the need for services, and is positively correlated with clinical assessments. Genetic factors have been estimated to account for 25-64% of the variance in the liability of self-rated health. The aim of the present study was to identify Single Nucleotide Polymorphisms (SNPs) underlying the heritability of self-rated health by conducting a genome-wide association analysis in a large sample of 6,706 Australian individuals aged 18-92. No genome wide significant SNPs associated with self-rated health could be identified, indicating that self-rated health may be influenced by a large number of SNPs with very small effect size. A very large sample will be needed to identify these SNPs

    Gray space \u3ci\u3eand\u3c/i\u3e green space proximity associated with higher anxiety in youth with autism

    Get PDF
    This study used ZIP code level data on children\u27s health (National Survey of Children\u27s Health, 2012) and land cover (National Land Cover Database, 2011) from across the United States to investigate connections between proximity to green space (tree canopy), gray space (impervious surfaces), and expression of a critical co-morbid condition, anxiety, in three groups of youth: children diagnosed with autism spectrum disorder (ASD, n=1501), non-ASD children with special healthcare needs (CSHCN, n=15,776), and typically developing children (n=53,650). Both impervious surface coverage and tree canopy coverage increased the risk of severe anxiety in youth with autism, but not CSHCN or typical children. Children with ASD might experience the stress-reducing benefits of nature differently than their typically developing peers. More research using objective diagnostic metrics at finer spatial scales would help to illuminate complex relationships between green space, anxiety, and other co-morbid conditions in youth with ASD

    The Diagnostic Approach to Monogenic Very Early Onset Inflammatory Bowel Disease

    Get PDF
    Patients with a diverse spectrum of rare genetic disorders can present with inflammatory bowel disease (monogenic IBD). Patients with these disorders often develop symptoms during infancy or early childhood, along with endoscopic or histological features of Crohn’s disease, ulcerative colitis, or IBD unclassified. Defects in interleukin-10 signaling have a Mendelian inheritance pattern with complete penetrance of intestinal inflammation. Several genetic defects that disturb intestinal epithelial barrier function or affect innate and adaptive immune function have incomplete penetrance of the IBD-like phenotype. Several of these monogenic conditions do not respond to conventional therapy and are associated with high morbidity and mortality. Due to the broad spectrum of these extremely rare diseases, a correct diagnosis is frequently a challenge and often delayed. In many cases, these diseases cannot be categorized based on standard histological and immunologic features of IBD. Genetic analysis is required to identify the cause of the disorder and offer the patient appropriate treatment options, which include medical therapy, surgery, or allogeneic hematopoietic stem cell transplantation. In addition, diagnosis based on genetic analysis can lead to genetic counseling for family members of patients. We describe key intestinal, extraintestinal, and laboratory features of 50 genetic variants associated with IBD-like intestinal inflammation. In addition, we provide approaches for identifying patients likely to have these disorders. We also discuss classic approaches to identify these variants in patients, starting with phenotypic and functional assessments that lead to analysis of candidate genes. As a complementary approach, we discuss parallel genetic screening using next-generation sequencing followed by functional confirmation of genetic defects

    Bio-physical determinants of sediment accumulation on an offshore coral reef: A snapshot study

    Get PDF
    Sediments are found on all coral reefs around the globe. However, the amount of sediment in different reservoirs, and the rates at which sediments move between reservoirs, can shape the biological functioning of coral reefs. Unfortunately, relatively few studies have examined reef sediment dynamics, and associated bio-physical drivers, simultaneously over matching spatial and temporal scales. This has led to a partial understanding of how sediments and living reef systems are connected, especially on clear-water offshore reefs. To address this problem, four sediment reservoirs/sedimentary processes and three bio-physical drivers were quantified across seven different reef habitats/depths at Lizard Island, an exposed mid-shelf reef on the Great Barrier Reef. Even in this clear-water reef location a substantial load of suspended sediment passed over the reef; a load theoretically capable of replacing the entire standing stock of on-reef turf sediments in just 8 h. However, quantification of actual sediment deposition suggested that just 2 % of this passing sediment settled on the reef. The data also revealed marked spatial incongruence in sediment deposition (sediment trap data) and accumulation (TurfPod data) across the reef profile, with the flat and back reef emerging as key areas of both deposition and accumulation. By contrast, the shallow windward reef crest was an area of deposition but had a limited capacity for sediment accumulation. These cross-reef patterns related to wave energy and reef geomorphology, with low sediment accumulation on the ecologically important reef crest aligning with substantial wave energy. These findings reveal a disconnect between patterns of sediment deposition and accumulation on the benthos, with the ‘post-settlement’ fate of sediments dependent on local hydrodynamic conditions. From an ecological perspective, the data suggests key contextual constraints (wave energy and reef geomorphology) may predispose some reefs or reef areas to high-load turf sediment regimes

    A systematic review and secondary data analysis of the interactions between the serotonin transporter 5-HTTLPR polymorphism and environmental and psychological factors in eating disorders

    Get PDF
    Objectives: to summarize and synthesize the growing gene x environment (GxE) research investigating the promoter region of the serotonin transporter gene (5-HTTLPR) in the eating disorders (ED) field, and overcome the common limitation of low sample size, by undertaking a systematic review followed by a secondary data meta-analysis of studies identified by the review. Method: a systematic review of articles using PsycINFO, PubMed, and EMBASE was undertaken to identify studies investigating the interaction between 5-HTTLPR and an environmental or psychological factor, with an ED-related outcome variable. Seven studies were identified by the systematic review, with complete data sets of five community (n = 1750, 64.5% female) and two clinical (n = 426,100% female) samples combined to perform four secondary-data analyses: 5-I-M1PR x Traumatic Life Events to predict ED status (n = 909), 5-HTTLPR x Sexual and Physical Abuse to predict bulimic symptoms (n = 1097), 5-HTTLPR x Depression to predict bulimic symptoms (n = 1256), and 5-HTTLPRx Impulsiveness to predict disordered eating (n = 1149). Results: under a multiplicative model, the low function (s) allele of 5-HTTLPR interacted with traumatic life events and experiencing both sexual and physical abuse (but not only one) to predict increased likelihood of an ED and bulimic symptoms, respectively. However, under an additive model there was also an interaction between sexual and physical abuse considered independently and 5-HTTLPR, and no interaction with traumatic life events. No other GxE interactions were significant. Conclusion: early promising results should be followed-up with continued cross-institutional collaboration in order to achieve the large sample sizes necessary for genetic research
    • …
    corecore