4,936 research outputs found
Overdiagnosis and overtreatment over time
Overdiagnosis and overtreatment are often thought of as relatively recent phenomena, influenced by a contemporary combination of technology, specialization, payment models, marketing, and supply-related demand. Yet a quick glance at the historical record reveals that physicians and medical manufacturers have been accused of iatrogenic excess for centuries, if not millennia. Medicine has long had therapeutic solutions that search for ever-increasing diagnostic problems. Whether the intervention at hand has been leeches and lancets, calomel and cathartics, aspirins and amphetamines, or statins and SSRIs, medical history is replete with skeptical critiques of diagnostic and therapeutic enthusiasm. The opportunity cost of this profusion shapes the other side of the coin: chronic persistence of underdiagnosis and undertreatment. Drawing from key controversies of the 19th and 20th centuries, we chart the enduring challenges of inter-related diagnostic and therapeutic excess. As the present critique of overdiagnosis and overtreatment seeks to mobilize resources from inside and outside of medicine to rein in these impulses, we provide an instructive historical context from which to act
Hierarchical Event Descriptors (HED): Semi-Structured Tagging for Real-World Events in Large-Scale EEG.
Real-world brain imaging by EEG requires accurate annotation of complex subject-environment interactions in event-rich tasks and paradigms. This paper describes the evolution of the Hierarchical Event Descriptor (HED) system for systematically describing both laboratory and real-world events. HED version 2, first described here, provides the semantic capability of describing a variety of subject and environmental states. HED descriptions can include stimulus presentation events on screen or in virtual worlds, experimental or spontaneous events occurring in the real world environment, and events experienced via one or multiple sensory modalities. Furthermore, HED 2 can distinguish between the mere presence of an object and its actual (or putative) perception by a subject. Although the HED framework has implicit ontological and linked data representations, the user-interface for HED annotation is more intuitive than traditional ontological annotation. We believe that hiding the formal representations allows for a more user-friendly interface, making consistent, detailed tagging of experimental, and real-world events possible for research users. HED is extensible while retaining the advantages of having an enforced common core vocabulary. We have developed a collection of tools to support HED tag assignment and validation; these are available at hedtags.org. A plug-in for EEGLAB (sccn.ucsd.edu/eeglab), CTAGGER, is also available to speed the process of tagging existing studies
The potential for circular dichroism as an additional facile and sensitive method of monitoring low-molecular-weight heparins and heparinoids
The ultraviolet circular dichroism (CD) spectra of commercial low-molecular-weight heparins, heparinoids and other anticoagulant preparations have been recorded between 180 and 260 nm. Principal component analysis of the spectra allowed their differentiation into a number of groups related to the means of their production reflecting the structural changes introduced by each process. The findings suggest that CD provides a complementary technique for the rapid analysis of heparin preparations
Misdiagnosis, Mistreatment, and Harm - When Medical Care Ignores Social Forces.
The Case Studies in Social Medicine demonstrate that when physicians use only biologic or individual behavioral interventions to treat diseases that stem from or are exacerbated by social factors, we risk harming the patients we seek to serve
Maximum Likelihood Estimation for Single Particle, Passive Microrheology Data with Drift
Volume limitations and low yield thresholds of biological fluids have led to
widespread use of passive microparticle rheology. The mean-squared-displacement
(MSD) statistics of bead position time series (bead paths) are either applied
directly to determine the creep compliance [Xu et al (1998)] or transformed to
determine dynamic storage and loss moduli [Mason & Weitz (1995)]. A prevalent
hurdle arises when there is a non-diffusive experimental drift in the data.
Commensurate with the magnitude of drift relative to diffusive mobility,
quantified by a P\'eclet number, the MSD statistics are distorted, and thus the
path data must be "corrected" for drift. The standard approach is to estimate
and subtract the drift from particle paths, and then calculate MSD statistics.
We present an alternative, parametric approach using maximum likelihood
estimation that simultaneously fits drift and diffusive model parameters from
the path data; the MSD statistics (and consequently the compliance and dynamic
moduli) then follow directly from the best-fit model. We illustrate and compare
both methods on simulated path data over a range of P\'eclet numbers, where
exact answers are known. We choose fractional Brownian motion as the numerical
model because it affords tunable, sub-diffusive MSD statistics consistent with
typical 30 second long, experimental observations of microbeads in several
biological fluids. Finally, we apply and compare both methods on data from
human bronchial epithelial cell culture mucus.Comment: 29 pages, 12 figure
Obtaining Remote-Sensing Reflectance from Multiple Instrument Systems
Obtaining accurate in situ measurements of Apparent Optical Properties (AOPs) is critical to maintaining satellite data quality. One approach to ensure accuracy is to deploy several independent instruments to measure the same phenomenon. During a cruise in June 2012, off the lee coast of the island of Hawaii, repeated profiles were made with two separate radiometric systems, one from Satlantic, Inc. (Hyperpro) and the other from Biospherical Instruments, Inc. (C-Ops). The C-Ops is multispectral, while the Hyperpro is hyperspectral. Both measure above-water solar irradiance (E(sub s)), downwelling in-water irradiance (E(sub d)), and upwelling in-water radiance (L(sub u)). From these measurements remotely-sensed reflectance (R(sub rs))can be calculated and compared with satellite data. All instruments were calibrated shortly before use, and while differences are to be expected due to temporal changes and spectral weighting differences, these should be consistent and minimal. We explore these differences, and compare to data retrieved from the NASA Moderate Resolution Imaging Spectroradiometer onboard Aqua (MODIS Aqua) when available. We also examine data collection and processing protocols for these systems
- …