1,097 research outputs found

    Verbal De-escalation of the Agitated Patient: Consensus Statement of the American Association for Emergency Psychiatry Project BETA De-escalation Workgroup

    Get PDF
    Agitation is an acute behavioral emergency requiring immediate intervention. Traditional methods of treating agitated patients, ie, routine restraints and involuntary medication, have been replaced with a much greater emphasis on a noncoercive approach. Experienced practitioners have found that if such interventions are undertaken with genuine commitment, successful outcomes can occur far more often than previously thought possible. In the new paradigm, a 3-step approach is used. First, the patient is verbally engaged; then a collaborative relationship is established; and, finally, the patient is verbally de-escalated out of the agitated state. Verbal de-escalation is usually the key to engaging the patient and helping him become an active partner in his evaluation and treatment; although, we also recognize that in some cases nonverbal approaches, such as voluntary medication and environment planning, are also important. When working with an agitated patient, there are 4 main objectives: (1) ensure the safety of the patient, staff, and others in the area; (2) help the patient manage his emotions and distress and maintain or regain control of his behavior; (3) avoid the use of restraint when at all possible; and (4) avoid coercive interventions that escalate agitation. The authors detail the proper foundations for appropriate training for de-escalation and provide intervention guidelines, using the “10 domains of de-escalation.

    A comparison of RNA amplification techniques at sub-nanogram input concentration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression profiling of small numbers of cells requires high-fidelity amplification of sub-nanogram amounts of RNA. Several methods for RNA amplification are available; however, there has been little consideration of the accuracy of these methods when working with very low-input quantities of RNA as is often required with rare clinical samples. Starting with 250 picograms-3.3 nanograms of total RNA, we compared two linear amplification methods 1) modified T7 and 2) Arcturus RiboAmp HS and a logarithmic amplification, 3) Balanced PCR. Microarray data from each amplification method were validated against quantitative real-time PCR (QPCR) for 37 genes.</p> <p>Results</p> <p>For high intensity spots, mean Pearson correlations were quite acceptable for both total RNA and low-input quantities amplified with each of the 3 methods. Microarray filtering and data processing has an important effect on the correlation coefficient results generated by each method. Arrays derived from total RNA had higher Pearson's correlations than did arrays derived from amplified RNA when considering the entire unprocessed dataset, however, when considering a gene set of high signal intensity, the amplified arrays had superior correlation coefficients than did the total RNA arrays.</p> <p>Conclusion</p> <p>Gene expression arrays can be obtained with sub-nanogram input of total RNA. High intensity spots showed better correlation on array-array analysis than did unfiltered data, however, QPCR validated the accuracy of gene expression array profiling from low-input quantities of RNA with all 3 amplification techniques. RNA amplification and expression analysis at the sub-nanogram input level is both feasible and accurate if data processing is used to focus attention to high intensity genes for microarrays or if QPCR is used as a gold standard for validation.</p

    \u3cem\u3eSpitzer\u3c/em\u3e Reveals what is Behind Orion\u27s Bar

    Get PDF
    We present Spitzer Space Telescope observations of 11 regions south-east (SE) of the Bright Bar in the Orion Nebula, along a radial from the exciting star θ1 Ori C, extending from 2.6 to 12.1 arcmin. Our Cycle 5 programme obtained deep spectra with matching Infrared Spectrograph (IRS) short-high (SH) and long-high (LH) aperture grid patterns. Most previous IR missions observed only the inner few arcmin (the ‘Huygens’ Region). The extreme sensitivity of Spitzer in the 10–37 μm spectral range permitted us to measure many lines of interest to much larger distances from θ1 Ori C. Orion is the benchmark for studies of the interstellar medium, particularly for elemental abundances. Spitzer observations provide a unique perspective on the neon and sulphur abundances by virtue of observing the dominant ionization states of Ne (Ne+, Ne++) and S (S++, S3 +) in Orion and H II regions in general. The Ne/H abundance ratio is especially well determined, with a value of (1.02 ± 0.02) × 10−4 or in terms of the conventional expression, 12 + log(Ne/H) = 8.01 ± 0.01. We obtained corresponding new ground-based spectra at Cerro Tololo Inter-American Observatory (CTIO). These optical data are used to estimate the electron temperature, electron density, optical extinction and the S+/S++ ionization ratio at each of our Spitzer positions. That permits an adjustment for the total gas-phase sulphur abundance because no S+ line is observed by Spitzer. The gas-phase S/H abundance ratio is (7.68 ± 0.25) × 10−6 or 12 + log(S/H) = 6.89 ± 0.02. The Ne/S abundance ratio may be determined even when the weaker hydrogen line, H(7–6) here, is not measured. The mean value, adjusted for the optical S+/S++ ratio, is Ne/S =13.0 ± 0.2. We derive the electron density (Ne) versus distance from θ1 Ori C for [S III] (Spitzer) and [S II] (CTIO). Both distributions are for the most part decreasing with increasing distance. The values for Ne[S II] fall below those of Ne[S III] at a given distance except for the outermost position. This general trend is consistent with the commonly accepted blister model for the Orion Nebula. The natural shape of such a blister is concave with an underlying decrease in density with increasing distance from the source of photoionization. Our spectra are the deepest ever taken in these outer regions of Orion over the 10–37 μm range. Tracking the changes in ionization structure via the line emission to larger distances provides much more leverage for understanding the far less studied outer regions. A dramatic find is the presence of high-ionization Ne++ all the way to the outer optical boundary ∼12 arcmin from θ1 Ori C. This IR result is robust, whereas the optical evidence from observations of high-ionization species (e.g. O++) at the outer optical boundary suffers uncertainty because of scattering of emission from the much brighter inner Huygens Region. The Spitzerspectra are consistent with the Bright Bar being a high-density ‘localized escarpment’ in the larger Orion Nebula picture. Hard ionizing photons reach most solid angles well SE of the Bright Bar. The so-called Orion foreground ‘Veil’, seen prominently in projection at our outermost position 12 arcmin from θ1 Ori C, is likely an H II region–photo-dissociation region (PDR) interface. The Spitzer spectra show very strong enhancements of PDR lines –[Si II] 34.8 μm, [Fe II] 26.0 μm and molecular hydrogen – at the outermost position

    Regulation of the Stem Cell–Host Immune System Interplay Using Hydrogel Coencapsulation System with an Anti-Inflammatory Drug

    Get PDF
    The host immune system is known to influence mesenchymal stem cell (MSC)-mediated bone tissue regeneration. However, the therapeutic capacity of hydrogel biomaterial to modulate the interplay between MSCs and T-lymphocytes is unknown. Here it is shown that encapsulating hydrogel affects this interplay when used to encapsulate MSCs for implantation by hindering the penetration of pro-inflammatory cells and/or cytokines, leading to improved viability of the encapsulated MSCs. This combats the effects of the host pro-inflammatory T-lymphocyte-induced nuclear factor kappaB pathway, which can reduce MSC viability through the CASPASE-3 and CAS-PASE-8 associated proapoptotic cascade, resulting in the apoptosis of MSCs. To corroborate rescue of engrafted MSCs from the insult of the host immune system, the incorporation of the anti-inflammatory drug indomethacin into the encapsulating alginate hydrogel further regulates the local microenvironment and prevents pro-inflammatory cytokine-induced apoptosis. These findings suggest that the encapsulating hydrogel can regulate the MSC-host immune cell interplay and direct the fate of the implanted MSCs, leading to enhanced tissue regeneration

    Regulation of the Stem Cell–Host Immune System Interplay Using Hydrogel Coencapsulation System with an Anti-Inflammatory Drug

    Get PDF
    The host immune system is known to influence mesenchymal stem cell (MSC)-mediated bone tissue regeneration. However, the therapeutic capacity of hydrogel biomaterial to modulate the interplay between MSCs and T-lymphocytes is unknown. Here it is shown that encapsulating hydrogel affects this interplay when used to encapsulate MSCs for implantation by hindering the penetration of pro-inflammatory cells and/or cytokines, leading to improved viability of the encapsulated MSCs. This combats the effects of the host pro-inflammatory T-lymphocyte-induced nuclear factor kappaB pathway, which can reduce MSC viability through the CASPASE-3 and CAS-PASE-8 associated proapoptotic cascade, resulting in the apoptosis of MSCs. To corroborate rescue of engrafted MSCs from the insult of the host immune system, the incorporation of the anti-inflammatory drug indomethacin into the encapsulating alginate hydrogel further regulates the local microenvironment and prevents pro-inflammatory cytokine-induced apoptosis. These findings suggest that the encapsulating hydrogel can regulate the MSC-host immune cell interplay and direct the fate of the implanted MSCs, leading to enhanced tissue regeneration

    Regulation of the Stem Cell–Host Immune System Interplay Using Hydrogel Coencapsulation System with an Anti-Inflammatory Drug

    Get PDF
    The host immune system is known to influence mesenchymal stem cell (MSC)-mediated bone tissue regeneration. However, the therapeutic capacity of hydrogel biomaterial to modulate the interplay between MSCs and T-lymphocytes is unknown. Here it is shown that encapsulating hydrogel affects this interplay when used to encapsulate MSCs for implantation by hindering the penetration of pro-inflammatory cells and/or cytokines, leading to improved viability of the encapsulated MSCs. This combats the effects of the host pro-inflammatory T-lymphocyte-induced nuclear factor kappaB pathway, which can reduce MSC viability through the CASPASE-3 and CAS-PASE-8 associated proapoptotic cascade, resulting in the apoptosis of MSCs. To corroborate rescue of engrafted MSCs from the insult of the host immune system, the incorporation of the anti-inflammatory drug indomethacin into the encapsulating alginate hydrogel further regulates the local microenvironment and prevents pro-inflammatory cytokine-induced apoptosis. These findings suggest that the encapsulating hydrogel can regulate the MSC-host immune cell interplay and direct the fate of the implanted MSCs, leading to enhanced tissue regeneration

    Regulation of the Stem Cell–Host Immune System Interplay Using Hydrogel Coencapsulation System with an Anti-Inflammatory Drug

    Get PDF
    The host immune system is known to influence mesenchymal stem cell (MSC)-mediated bone tissue regeneration. However, the therapeutic capacity of hydrogel biomaterial to modulate the interplay between MSCs and T-lymphocytes is unknown. Here it is shown that encapsulating hydrogel affects this interplay when used to encapsulate MSCs for implantation by hindering the penetration of pro-inflammatory cells and/or cytokines, leading to improved viability of the encapsulated MSCs. This combats the effects of the host pro-inflammatory T-lymphocyte-induced nuclear factor kappaB pathway, which can reduce MSC viability through the CASPASE-3 and CAS-PASE-8 associated proapoptotic cascade, resulting in the apoptosis of MSCs. To corroborate rescue of engrafted MSCs from the insult of the host immune system, the incorporation of the anti-inflammatory drug indomethacin into the encapsulating alginate hydrogel further regulates the local microenvironment and prevents pro-inflammatory cytokine-induced apoptosis. These findings suggest that the encapsulating hydrogel can regulate the MSC-host immune cell interplay and direct the fate of the implanted MSCs, leading to enhanced tissue regeneration

    The challenge of enterprise/innovation: a case study of a modern university

    Get PDF
    In the prevailing economic and political climate for Higher Education a greater emphasis has been placed on diversifying the funding base. The present study was undertaken between 2012 and 2014 and addressed the implementation of an approach to the transformation of one academic school in a medium-sized modern university in Wales to a more engaged enterprise culture. A multimethod investigation included a bi-lingual (English and Welsh) online survey of academic staff and yielded a 71% response rate (n = 45). The findings informed a series of in-depth interviews (n = 24) with a representative sample of those involved in enterprise work (support staff, managers, senior managers), and those who were not. The results provided the platform for the ‘S4E model’ for effective engagement with enterprise: (1) Strategic significance for Enterprise, (2) Support for Enterprise, (3) Synergy for Enterprise, and (4) Success for Enterprise. The outcomes of the research and the recommendations from it have potential to inform practice in other academic schools within the university and, in a wider context, within other Schools of Education regionally, nationally and internationally. Its original empirical exploration of enterprise within education studies is a significant contribution to that body of knowledge

    Spitzer reveals what's behind Orion's Bar

    Get PDF
    We present Spitzer Space Telescope observations of 11 regions SE of the Bright Bar in the Orion Nebula, along a radial from the exciting star theta1OriC, extending from 2.6 to 12.1'. Our Cycle 5 programme obtained deep spectra with matching IRS short-high (SH) and long-high (LH) aperture grid patterns. Most previous IR missions observed only the inner few arcmin. Orion is the benchmark for studies of the ISM particularly for elemental abundances. Spitzer observations provide a unique perspective on the Ne and S abundances by virtue of observing the dominant ionization states of Ne (Ne+, Ne++) and S (S++, S3+) in Orion and H II regions in general. The Ne/H abundance ratio is especially well determined, with a value of (1.01+/-0.08)E-4. We obtained corresponding new ground-based spectra at CTIO. These optical data are used to estimate the electron temperature, electron density, optical extinction, and the S+/S++ ratio at each of our Spitzer positions. That permits an adjustment for the total gas-phase S abundance because no S+ line is observed by Spitzer. The gas-phase S/H abundance ratio is (7.68+/-0.30)E-6. The Ne/S abundance ratio may be determined even when the weaker hydrogen line, H(7-6) here, is not measured. The mean value, adjusted for the optical S+/S++ ratio, is Ne/S = 13.0+/-0.6. We derive the electron density versus distance from theta1OriC for [S III] and [S II]. Both distributions are for the most part decreasing with increasing distance. A dramatic find is the presence of high-ionization Ne++ all the way to the outer optical boundary ~12' from theta1OriC. This IR result is robust, whereas the optical evidence from observations of high-ionization species (e.g. O++) at the outer optical boundary suffers uncertainty because of scattering of emission from the much brighter inner Huygens Region.Comment: 60 pages, 16 figures, 10 tables. MNRAS accepte

    Directed discovery of greener cosolvents:new cosolvents for use in ionic liquid based organic electrolyte solutions for cellulose dissolution

    Get PDF
    Cellulose is an abundant, cheap, renewable, yet recalcitrant, material, which, if dissolved, may be formed into a wide range of materials, composites, and mixtures. Much attention has recently been focused on the use of mixtures of ionic liquids and some solvents (so-called organic electrolyte solutions, OESs) as efficient cellulose dissolution solvents, but many of the cosolvents used lack green credentialsa perennial problem where dipolar aprotic solvents are the solvents of choice. We present a rational approach, based on definition of ranges of solvent parameters gathered together in recently published databases, to find “greener” cosolvents for OES formation. Thus, γ-butyrolactone is identified as a suitable OES former for dissolution of microcrystalline cellulose and biobased γ-valerolactone as a marginally less efficient, but significantly safer, alternative. Comparison of cosolvent efficiency reveals that previous use of measures of mass, or concentration, of cellulose dissolved may have masked the similarities between 1-methylimidazole, dimethyl sulfoxide (DMSO), <i>N,N</i>-dimethylformamide, <i>N-N</i>′-dimethyl­imidazo­lidinone, <i>N,N</i>-dimethylacetamide, <i>N</i>-methylpyrrolidinone, and sulfolane (seldom considered), while comparison on a molar basis reveals that the molar volume of the solvent is an important factor. Reference-interaction site model (RISM) calculations for the DMSO/1-ethyl-3-methyl­imidazolium acetate OES suggest competition between DMSO and the acetate anion and preferential solvation of cellulose by the ionic liquid
    corecore