4,406 research outputs found

    Safe Zero-Shot Model-Based Learning and Control: A Wasserstein Distributionally Robust Approach

    Full text link
    This paper explores distributionally robust zero-shot model-based learning and control using Wasserstein ambiguity sets. Conventional model-based reinforcement learning algorithms struggle to guarantee feasibility throughout the online learning process. We address this open challenge with the following approach. Using a stochastic model-predictive control (MPC) strategy, we augment safety constraints with affine random variables corresponding to the instantaneous empirical distributions of modeling error. We obtain these distributions by evaluating model residuals in real time throughout the online learning process. By optimizing over the worst case modeling error distribution defined within a Wasserstein ambiguity set centered about our empirical distributions, we can approach the nominal constraint boundary in a provably safe way. We validate the performance of our approach using a case study of lithium-ion battery fast charging, a relevant and safety-critical energy systems control application. Our results demonstrate marked improvements in safety compared to a basic learning model-predictive controller, with constraints satisfied at every instance during online learning and control.Comment: In review for CDC2

    Comparability of Functional MRI Response in Young and Old During Inhibition

    Get PDF
    When using fMRI to study age-related cognitive changes, it is important to establish the integrity of the hemodynamic response because, potentially, it can be affected by age and disease. However, there have been few attempts to document such integrity and no attempts using higher cognitive rather than perceptual or motor tasks. We used fMRI with 28 healthy young and older adults on an inhibitory control task. Although older and young adults differed in task performance and activation patterns, they had comparable hemodynamic responses. We conclude that activation during cognitive inhibition, which was predominantly increased in elders, was not due to vascular confounds or specific changes in hemodynamic coupling

    Is the PAMELA Positron Excess Winos?

    Get PDF
    Recently the PAMELA satellite-based experiment reported an excess of galactic positrons that could be a signal of annihilating dark matter. The PAMELA data may admit an interpretation as a signal from a wino-like LSP of mass about 200 GeV, normalized to the local relic density, and annihilating mainly into W-bosons. This possibility requires the current conventional estimate for the energy loss rate of positrons be too large by roughly a factor of five. Data from anti-protons and gamma rays also provide tension with this interpretation, but there are significant astrophysical uncertainties associated with their propagation. It is not unreasonable to take this well-motivated candidate seriously, at present, in part because it can be tested in several ways soon. The forthcoming PAMELA data on higher energy positrons and the FGST (formerly GLAST) data, should provide important clues as to whether this scenario is correct. If correct, the wino interpretation implies a cosmological history in which the dark matter does not originate in thermal equilibrium.Comment: 7 pages, 4 figue

    Finding local community structure in networks

    Full text link
    Although the inference of global community structure in networks has recently become a topic of great interest in the physics community, all such algorithms require that the graph be completely known. Here, we define both a measure of local community structure and an algorithm that infers the hierarchy of communities that enclose a given vertex by exploring the graph one vertex at a time. This algorithm runs in time O(d*k^2) for general graphs when dd is the mean degree and k is the number of vertices to be explored. For graphs where exploring a new vertex is time-consuming, the running time is linear, O(k). We show that on computer-generated graphs this technique compares favorably to algorithms that require global knowledge. We also use this algorithm to extract meaningful local clustering information in the large recommender network of an online retailer and show the existence of mesoscopic structure.Comment: 7 pages, 6 figure

    A Potential Role for the Interaction of Wolbachia Surface Proteins with the Brugia malayi Glycolytic Enzymes and Cytoskeleton in Maintenance of Endosymbiosis

    Get PDF
    The human filarial parasite Brugia malayi harbors an endosymbiotic bacterium of the genus Wolbachia. The Wolbachia represent an attractive target for the control of filarial induced disease as elimination of the bacteria affects molting, reproduction and survival of the worms. The molecular basis for the symbiotic relationship between Wolbachia and their filarial hosts has yet to be elucidated. To identify proteins involved in this process, we focused on the Wolbachia surface proteins (WSPs), which are known to be involved in bacteria-host interactions in other bacterial systems. Two WSP-like proteins (wBm0152 and wBm0432) were localized to various host tissues of the B. malayi female adult worms and are present in the excretory/secretory products of the worms. We provide evidence that both of these proteins bind specifically to B. malayi crude protein extracts and to individual filarial proteins to create functional complexes. The wBm0432 interacts with several key enzymes involved in the host glycolytic pathway, including aldolase and enolase. The wBm0152 interacts with the host cytoskeletal proteins actin and tubulin. We also show these interactions in vitro and have verified that wBm0432 and B. malayi aldolase, as well as wBm0152 and B. malayi actin, co-localize to the vacuole surrounding Wolbachia. We propose that both WSP protein complexes interact with each other via the aldolase-actin link and/or via the possible interaction between the host's enolase and the cytoskeleton, and play a role in Wolbachia distribution during worm growth and embryogenesis. © 2013 Melnikow et al

    Activating \u3ci\u3eActavis\u3c/i\u3e

    Get PDF
    In Federal Trade Commission v. Actavis, Inc., the Supreme Court provided fundamental guidance about how courts should handle antitrust challenges to reverse payment patent settlements. The Court came down strongly in favor of an antitrust solution to the problem, concluding that “an antitrust action is likely to prove more feasible administratively than the Eleventh Circuit believed.” At the same time, Justice Breyer’s majority opinion acknowledged that the Court did not answer every relevant question. The opinion closed by “leav[ing] to the lower courts the structuring of the present rule-of-reason antitrust litigation.”This article is an effort to help courts and counsel fill in the gaps. We identify and operationalize the essential features of the Court’s analysis. We describe the elements of a plaintiff’s affirmative case, justifications that are ruled out by the Court\u27s logic, and a test for viable justifications. For private cases, we outline an appropriate procedure for evaluating damages and suggest specific jury instructions
    • …
    corecore