220 research outputs found

    Efficient Bayesian Exploration for Soft Morphology-Action Co-optimization

    Get PDF
    UK Agriculture and Horticulture Development Board(Project CP 172)AHD

    Elemental analysis of histological specimens: A method to unmask nano asbestos fibers

    Get PDF
    There is recent mounting evidence that nanoparticles may have enhanced toxicological potential in comparison to the same material in the bulk form. The aim of this study was to develop a new method for unmask asbestos nanofibers from Formalin-Fixed, Paraffin-Embedded tissue. There is an increasing amount of evidence that nanoparticles may enhance toxicological potential in comparison to the same material in the bulk form. The aim of this study was to develop a new method to unmask asbestos nanofibers from Formalin-Fixed Paraffin-Embedded (FFPE) tissue. For the first time, in this study we applied Energy Dispersive X-ray (EDX) microanalysis through transmission electron microscopy to demonstrate the presence of asbestos nanofibers in histological specimens of patients with possible occupational exposure to asbestos. The diagnostic protocol was applied to 10 randomly selected lung cancer patients with no history of previous asbestos exposure. We detected asbestos nanofibers in close contact with lung cancer cells in two lung cancer patients with previous possible occupational exposure to asbestos. We were also able to identify the specific asbestos iso-type, which in one of the cases was the same rare variety used in the workplace of the affected patient. By contrast, asbestos nanofibers were not detected in lung cancer patients with no history of occupational asbestos exposure. The proposed technique can represent a potential useful tool for linking the disease to previous workplace exposure in uncertain cases. Furthermore, Formalin-Fixed Paraffin-Embedded (FFPE) tissues stored in the pathology departments might be re-evaluated for possible etiological attribution to asbestos in the case of plausible exposure. Since diseases acquired through occupational exposure to asbestos are generally covered by workers' insurance in most countries, the application of the protocol used in this study may have also relevant social and economic implications

    An Abdominal Phantom with Tunable Stiffness Nodules and Force Sensing Capability for Palpation Training

    Get PDF
    Robotic phantoms enable advanced physical examination training before using human patients. In this paper, we present an abdominal phantom for palpation training with controllable stiffness liver nodules that can also sense palpation forces. The coupled sensing and actuation approach is achieved by pneumatic control of positive-granular jammed nodules for tunable stiffness. Soft sensing is done using the variation of internal pressure of the nodules under external forces. This paper makes original contributions to extend the linear region of the neo-Hookean characteristic of the mechanical behavior of the nodules by 140% compared to no-jamming conditions and to propose a method using the organ level controllable nodules as sensors to estimate palpation position and force with a root-means-quare error (RMSE) of 4% and 6.5%, respectively. Compared to conventional soft sensors, the method allows the phantom to sense with no interference to the simulated physiological conditions when providing quantified feedback to trainees, and to enable training following current bare-hand examination protocols without the need to wear data gloves to collect data.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) MOTION grant EP/N03211X/2 and EP/N03208X/1, and EPSRC RoboPatient grant EP/T00603X/

    Comparative analysis of model-based predictive shared control for delayed operation in object reaching and recognition tasks with tactile sensing

    Get PDF
    Communication delay represents a fundamental challenge in telerobotics: on one hand, it compromises the stability of teleoperated robots, on the other hand, it decreases the user’s awareness of the designated task. In scientific literature, such a problem has been addressed both with statistical models and neural networks (NN) to perform sensor prediction, while keeping the user in full control of the robot’s motion. We propose shared control as a tool to compensate and mitigate the effects of communication delay. Shared control has been proven to enhance precision and speed in reaching and manipulation tasks, especially in the medical and surgical fields. We analyse the effects of added delay and propose a unilateral teleoperated leader-follower architecture that both implements a predictive system and shared control, in a 1-dimensional reaching and recognition task with haptic sensing. We propose four different control modalities of increasing autonomy: non-predictive human control (HC), predictive human control (PHC), (shared) predictive human-robot control (PHRC), and predictive robot control (PRC). When analyzing how the added delay affects the subjects’ performance, the results show that the HC is very sensitive to the delay: users are not able to stop at the desired position and trajectories exhibit wide oscillations. The degree of autonomy introduced is shown to be effective in decreasing the total time requested to accomplish the task. Furthermore, we provide a deep analysis of environmental interaction forces and performed trajectories. Overall, the shared control modality, PHRC, represents a good trade-off, having peak performance in accuracy and task time, a good reaching speed, and a moderate contact with the object of interest

    Online Morphological Adaptation for Tactile Sensing Augmentation

    Get PDF
    Sensor morphology and structure has the ability to significantly aid and improve tactile sensing capabilities, through mechanisms such as improved sensitivity or morphological computation. However, different tactile tasks require different morphologies posing a challenge as to how to best design sensors, and also how to enable sensor morphology to be varied. We introduce a jamming filter which, when placed over a tactile sensor, allows the filter to be shaped and molded online, thus varying the sensor structure. We demonstrate how this is beneficial for sensory tasks analyzing how the change in sensor structure varies the information that is gained using the sensor. Moreover, we show that appropriate morphology can significantly influence discrimination, and observe how the selection of an appropriate filter can increase the object classification accuracy when using standard classifiers by up to 28%

    Achieving Robotically Peeled Lettuce

    Get PDF
    Robotic technologies are being increasingly applied to agriculture, in particular to harvesting. Some types of produce such as iceberg lettuce require additional processing after harvesting in order to satisfy the needs of the end-user or customer. Lettuce must have its outer leaves removed, a task that is currently performed manually. The leaf removal task represents a challenging vision and manipulation problem: the lettuce is in a random pose on a flat surface, from which the outermost leaves must be removed quickly and without causing damage. This letter presents a novel vision pipeline and suction removal system that enables robotic lettuce leaf removal. A suction nozzle and control procedure are used for the removal itself, relying on the orientation estimation and stem detection provided by the vision pipeline. To the best of the author's knowledge, this is the first robotic lettuce leaf peeling system

    Antitumor activity of a novel anti-vascular endothelial growth factor receptor-1 monoclonal antibody that does not interfere with ligand binding

    Get PDF
    Vascular endothelial growth factor receptor-1 (VEGFR-1) is a tyrosine kinase transmembrane receptor that has also a soluble isoform containing most of the extracellular ligand binding domain (sVEGFR-1). VEGF-A binds to both VEGFR-2 and VEGFR-1, whereas placenta growth factor (PlGF) interacts exclusively with VEGFR-1. In this study we generated an anti-VEGFR-1 mAb (D16F7) by immunizing BALB/C mice with a peptide that we had previously reported to inhibit angiogenesis and endothelial cell migration induced by PlGF. D16F7 did not affect binding of VEGF-A or PlGF to VEGFR-1, thus allowing sVEGFR-1 to act as decoy receptor for these growth factors, but it hampered receptor homodimerization and activation. D16F7 inhibited both the chemotactic response of human endothelial, myelomonocytic and melanoma cells to VEGFR-1 ligands and vasculogenic mimicry by tumor cells. Moreover, D16F7 exerted in vivo antiangiogenic effects in a matrigel plug assay. Importantly, D16F7 inhibited tumor growth and was well tolerated by B6D2F1 mice injected with syngeneic B16F10 melanoma cells. The antitumor effect was associated with melanoma cell apoptosis, vascular abnormalities and decrease of both monocyte/macrophage infiltration and myeloid progenitor mobilization. For all the above, D16F7 may be exploited in the therapy of metastatic melanoma and other tumors or pathological conditions involving VEGFR-1 activation

    Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries

    Get PDF
    Geometry, nonlinearity, dispersion and two-photon absorption figure of merit of three basic silicon-organic hybrid waveguide designs are compared. Four-wave mixing and heterodyne pump-probe measurements show that all designs achieve high nonlinearities. The fundamental limitation of two-photon absorption in silicon is overcome using silicon-organic hybrid integration, with a five-fold improvement for the figure of merit (FOM). The value of FOM = 2.19 measured for silicon-compatible nonlinear slot waveguides is the highest value published. (C) 2009 Optical Society of Americ

    Ellagic acid inhibits bladder cancer invasiveness and in vivo tumor growth

    Get PDF
    Ellagic acid (EA) is a polyphenolic compound that can be found as a naturally occurring hydrolysis product of ellagitannins in pomegranates, berries, grapes, green tea and nuts. Previous studies have reported the antitumor properties of EA mainly using in vitro models. No data are available about EA influence on bladder cancer cell invasion of the extracellular matrix triggered by vascular endothelial growth factor-A (VEGF-A), an angiogenic factor associated with disease progression and recurrence, and tumor growth in vivo. In this study, we have investigated EA activity against four different human bladder cancer cell lines (i.e., T24, UM-UC-3, 5637 and HT-1376) by in vitro proliferation tests (measuring metabolic and foci forming activity), invasion and chemotactic assays in response to VEGF-A and in vivo preclinical models in nude mice. Results indicate that EA exerts anti-proliferative effects as a single agent and enhances the antitumor activity of mitomycin C, which is commonly used for the treatment of bladder cancer. EA also inhibits tumor invasion and chemotaxis, specifically induced by VEGF-A, and reduces VEGFR-2 expression. Moreover, EA down-regulates the expression of programmed cell death ligand 1 (PD-L1), an immune checkpoint involved in immune escape. EA in vitro activity was confirmed by the results of in vivo studies showing a significant reduction of the growth rate, infiltrative behavior and tumor-associated angiogenesis of human bladder cancer xenografts. In conclusion, these results suggest that EA may have a potential role as an adjunct therapy for bladder cancer

    100 Gbit/s electro-optic modulator and 56 Gbits/s wavelength converter for DQPSK data in silicon-organic hybrid (SOH) technology

    Get PDF
    CMOS-compatible silicon photonics combined with covers of chi (2) or chi (3)-nonlinear organic material allows electro-optic modulators and all-optical wavelength converters for data rates of 100 Gbit/s and beyond. The devices are not impaired by free carriers
    • …
    corecore