60 research outputs found

    A novel mutation (Cys308Phe) of the LDL receptor gene in families from the South-Eastern part of Poland

    Get PDF
    The purpose of this investigation was to characterize a new mutation in the LDL-receptor (LDLR) gene in three families with clinically diagnosed familial hypercholesterolemia (FH) from the South-Eastern part of Poland. Mutational screening with exon by exon sequencing analysis was performed in all probands. The novel mutation c986G>T (Cys308Phe) in the exon 7 of LDLR gene was found in three apparently unrelated probands with FH. Analysis of the receptor activity of peripheral blood lymphocytes by binding and uptake of DiL-LDL showed a significant reduction (by 24% versus healthy control) of the fluorescent label in the lymphocytes of patients heterozygous for this mutation. Concentrations of serum LDL-C in probands before treatment were between 9.5 and 10.5 mmol/l. All patients had corneal arcus and tendon xanthoma. Clinically, families were characterized by premature coronary artery disease. This mutation occurred relatively frequently in our group of patients with FH, but this could be explained by a founder effect since we demonstrated their common ancestors

    Targeted genetic testing for familial hypercholesterolaemia using next generation sequencing:a population-based study

    Get PDF
    Background<p></p> Familial hypercholesterolaemia (FH) is a common Mendelian condition which, untreated, results in premature coronary heart disease. An estimated 88% of FH cases are undiagnosed in the UK. We previously validated a method for FH mutation detection in a lipid clinic population using next generation sequencing (NGS), but this did not address the challenge of identifying index cases in primary care where most undiagnosed patients receive healthcare. Here, we evaluate the targeted use of NGS as a potential route to diagnosis of FH in a primary care population subset selected for hypercholesterolaemia.<p></p> Methods<p></p> We used microfluidics-based PCR amplification coupled with NGS and multiplex ligation-dependent probe amplification (MLPA) to detect mutations in LDLR, APOB and PCSK9 in three phenotypic groups within the Generation Scotland: Scottish Family Health Study including 193 individuals with high total cholesterol, 232 with moderately high total cholesterol despite cholesterol-lowering therapy, and 192 normocholesterolaemic controls.<p></p> Results<p></p> Pathogenic mutations were found in 2.1% of hypercholesterolaemic individuals, in 2.2% of subjects on cholesterol-lowering therapy and in 42% of their available first-degree relatives. In addition, variants of uncertain clinical significance (VUCS) were detected in 1.4% of the hypercholesterolaemic and cholesterol-lowering therapy groups. No pathogenic variants or VUCS were detected in controls.<p></p> Conclusions<p></p> We demonstrated that population-based genetic testing using these protocols is able to deliver definitive molecular diagnoses of FH in individuals with high cholesterol or on cholesterol-lowering therapy. The lower cost and labour associated with NGS-based testing may increase the attractiveness of a population-based approach to FH detection compared to genetic testing with conventional sequencing. This could provide one route to increasing the present low percentage of FH cases with a genetic diagnosis

    COLOR CODED TISSUE CHARACTERIZATION BY 40 MHZ INTRAVASCULAR ULTRASOUND RELIABLY IDENTIFIES PLAQUE COMPOSITION COMPARISON WITH 64 SLICE COMPUTED TOMOGRAPHY

    Get PDF
    In The Netherlands, cascade screening to identify patients with familial hypercholesterolaemia (FH) has been introduced in 1994; a nationwide screening programme is currently ongoing to detect all - approximately 40 000 - carriers by molecular screening. Active identification by DNA testing has social implications such as difficulties in obtaining life and disability insurance. In The Netherlands, insurance companies are restricted in the use of genetic information of their clients by the Medical Examination Act (1998). Within the scope of this specific law, the Foundation for the Identification of Persons with Inherited Hypercholesterolaemia, the patient support association, representatives of the medical profession as well as insurers designed guidelines for risk assessment of mortality and morbidity of FH carriers. Risk assessment should be based on phenotype, that is, lipoprotein profile and the presence of classical cardiovascular risk, instead of the LDL receptor gene mutation. Applicants with FH should be accepted at normal rates if LDL-c levels are <4.0 mmol/l, in the absence of additional risk factors. After implementation of these guidelines, the number of complaints about insurance contracts has decreased markedl
    • 

    corecore