4 research outputs found
Fire design in safety engineering: likely fire curve for people’s safety
The present study analyses fire design settings according to Fire Safety Engineering (FSE) for the simulation of fire in civil activities and compares these simulations developed using natural and analytic fire curves. The simulated Heat Rate Release (HRR) curve, appropriately linearized, allows for the estimation of a Likely Fire Curve (LFC). The analytic curves have been introduced for the purpose of evaluating the strength and integrity of the structure, and the adoption of these curves in the fire safety engineering was made following the assumption that the phenomena of major intensity ensure the safe approach of fire design. This argument describes the method adopted for determining a likely fire model that guarantees a greater adherence of the virtualized phenomenon with respect to the potential event. The study showed that the analytic curve, adopted in order to verify the structural strength, in the beginning phases of fire produces fields of temperature and toxic concentrations lower than those obtained by simulation of the Likely Fire Curve. The assumption of the Likely Fire Curve model safeguards exposed people during self-rescue and emergency procedure. The programs used since 2011 for the simulation are FDS (Fire Dynamic Simulator v. 5.4.3) and Smokeview (5.4.8). Comparative analysis was developed using thermo-fluid dynamic parameters (temperature and heat release rate) relevant to the safety of the exposed persons; the case study focuses on children and employees of the nursery. The main result shows that the safety criterion, implicitly included in the analytical fire curves - normally used for fire resistance - doesn’t have the same applicability of a performance based approach on safety evaluation involving people. This paper shows that the Likely Fire Curve assumption involves a thermo-chemical stress more relevant to assessing the safety of exposed people
FIRE DESIGN: DIRECT COMPARISON BETWEEN FIRE CURVES. THE CASE STUDY OF A NURSERY
According to fire safety engineering, the present study analyzes fire design settings for simulation of fire in a nursery and proposes to compare simulations developed with a natural fire curve and nominal fire curve. Comparative analysis was developed according to thermo-fluid dynamic parameters that are relevant to the safety of the exposed and for the representative period of the danger flow to the exposed, which are mainly children between 0 and 3 years of age, helpless under ordinary conditions and even more so in case of emergency. Defined conditions of structure and ventilation, Two fire simulations, differentiated by fire curve, have been implemented: First simulation: the parameters have been derived from the simulation of a fire, characterized by analytic function of Heat Release Rate (HRR) Second simulation: the HRR function was obtained ex post by making a simulation of natural fire in realistically furnished room by imposing a minimum effective primer. The simulated HRR curve, appropriately linearized, allows to estimate a Likely Fire Curve (LFC). The simulations have been developed for a time of about 15 min, starting from the ignition of fire whereas the flow of the danger is serious for exposed mainly in this first phase of fire. The comparison between the parameters of fire involved the Temperature-Time Curve and HRR-Time Curve of both simulations and the ISO 834 Curve, which is a consolidated benchmark in Fire Safety Engineering (FSE). The nominal curves have been introduced for the purpose of checking whether the structural strength and integrity: the adoption of these curves in the fire safety engineering was made by analogy, on the assumption that the phenomena of major intensity, that these curves represent, ensure a safe approach on the choice of the fire design. The study showed indeed that the analytical curve, adopted in order to verify the structural strength, produces fields of both temperature and toxic concentrations lower than those obtained with the full simulation of the natural fire in order to the phases of ignition and growth, that is, in the step that requires activation of self rescue and emergency management. This result shows that taking compliance criterion, implicitly included in the analytical curves of fire, does not have the safe requirement typical of a protection approach. The advantage in taking natural fire simulations is evident in order to derive a Likely Fire Curve that for the purposes of both Thermo-Fluid Dynamics (TFD) and exodus simulation constitutes, as shown in the specific case study of nursery, a thermo-chemical stress more appropriate for the study of the safety of exposed and in the case of fire more serious
A BIM-based PSS Approach for the Management of Maintenance Operations of Building Equipment
The service-centered economy has grown considerably in the last few years, shifting from product-based solutions towards service centered offerings, i.e., Product-Service System (PSS) solutions. Such an approach is also emerging in the context of building equipment, where maintenance activities play a fundamental role in facility management. In this field, Building Information Modeling (BIM) based tools are diffusely used to improve the performances of facility management. However, few studies have addressed the above issues while considering a shift from product-based approaches in favor of more advanced servitization models. The study aims at integrating BIM based approaches in a PSS context for the improvement of the management of maintenance operations of building equipment. A general framework for maintenance management has been developed, merging the implementation of the PSS components in a BIM model for the definition of maintenance management. A first application of this methodology to a real case study concerning the elevators of an existing building has shown the efficacy of the proposed approach. The study highlighted the benefits that can be achieved, especially in terms of reduced periods of equipment unavailability, reduced costs and augmented customer satisfaction, while enhancing the information exchange between the PSS actors. Hence, although further research is still needed for its validation, the proposed approach can offer practical insights for the development of promising BIM-based PSS solutions for facility management in the construction industry
Equivalent Consumption Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle
Motivated by the fact that the real driving NOx emissions (RDE) of conventional diesel vehicles can exceed the legislation norms by far, a concept for the control of RDE with a diesel parallel hybrid electric vehicle (HEV) is proposed. By extending the well-known equivalent consumption minimization strategy (ECMS), the power split degree of freedom is used to control the NOx emissions and the battery state of charge (SOC) simultaneously. Through an appropriate formulation of the problem, the feedback control is shown to be separable into two dependent PI controllers. By hardware-in-the-loop (HIL) experiments, as well as by simulations, the proposed method is shown to minimize the fuel consumption while tracking a given reference trajectory for both the NOx emissions and the battery SOC