194 research outputs found
Integrated Generation of High-dimensional Entangled Photon States and Their Coherent Control
We demonstrate the generation of high-dimensional entangled photon pairs with a Hilbert-space dimensionality larger than 100 from an on-chip nonlinear microcavity, and introduce a coherent control scheme using standard telecommunications components
Multi-Trait, Multi-Environment Genomic Prediction of Durum Wheat With Genomic Best Linear Unbiased Predictor and Deep Learning Methods
Although durum wheat (Triticum turgidum var. durum Desf.) is a minor cereal crop representing just 5\u20137% of the world\u2019s total wheat crop, it is a staple food in Mediterranean countries, where it is used to produce pasta, couscous, bulgur and bread. In this paper, we cover multi-trait prediction of grain yield (GY), days to heading (DH) and plant height (PH) of 270 durum wheat lines that were evaluated in 43 environments (country\u2013location\u2013year combinations) across a broad range of water regimes in the Mediterranean Basin and other locations. Multi-trait prediction analyses were performed by implementing a multi-trait deep learning model (MTDL) with a feed-forward network topology and a rectified linear unit activation function with a grid search approach for the selection of hyper-parameters. The results of the multi-trait deep learning method were also compared with univariate predictions of the genomic best linear unbiased predictor (GBLUP) method and the univariate counterpart of the multi-trait deep learning method (UDL). All models were implemented with and without the genotype
7 environment interaction term. We found that the best predictions were observed without the genotype
7 environment interaction term in the UDL and MTDL methods. However, under the GBLUP method, the best predictions were observed when the genotype
7 environment interaction term was taken into account. We also found that in general the best predictions were observed under the GBLUP model; however, the predictions of the MTDL were very similar to those of the GBLUP model. This result provides more evidence that the GBLUP model is a powerful approach for genomic prediction, but also that the deep learning method is a practical approach for predicting univariate and multivariate traits in the context of genomic selection
Vegetative growth and water use characterization of a maize introgression library
Previous work showed that a maize introgression library (IL) derived from the cross between Gasp\ue9 Flint (an early flowering Canadian landrace) and B73 (the reference maize line) segregated for phenology as well for seminal root architecture (SRA) traits.
In this experiment, the IL was evaluated in the high-throughput phenotyping platform PhenoArch (INRA, Montpellier
Scalable and effective multi-level entangled photon states: A promising tool to boost quantum technologies
Multi-level (qudit) entangled photon states are a key resource for both fundamental physics and advanced applied science, as they can significantly boost the capabilities of novel technologies such as quantum communications, cryptography, sensing, metrology, and computing. The benefits of using photons for advanced applications draw on their unique properties: photons can propagate over long distances while preserving state coherence, and they possess multiple degrees of freedom (such as time and frequency) that allow scalable access to higher dimensional state encoding, all while maintaining low platform footprint and complexity. In the context of out of-lab use, photon generation and processing through integrated devices and off-the-shelf components are in high demand. Similarly, multi-level entanglement detection must be experimentally practical, i.e., ideally requiring feasible single-qudit projections and high noise tolerance. Here, we focus on multi-level optical Bell and cluster states as a critical resource for quantum technologies, as well as on universal witness operators for their feasible detection and entanglement characterization. Time-and frequency-entangled states are the main platform considered in this context. We review a promising approach for the scalable, cost-effective generation and processing of these states by using integrated quantum frequency combs and fiber-based devices, respectively. We finally report an experimentally practical entanglement identification and characterization technique based on witness operators that is valid for any complex photon state and provides a good compromise between experimental feasibility and noise robustness. The results reported here can pave the way toward boosting the implementation of quantum technologies in integrated and widely accessible photonic platforms
Scaling On-Chip Entangled Photon States to Higher Dimensions
Considerable efforts have recently focused on advancing quantum information pro- cessing by increasing the number of qubits
(the simplest unit of quantum information) in nonclassical systems such as ultracold atoms and superconducting circuits. A complementary approach to scale up infor- mation content is to move from two-level (qubit) to multilevel (quDit) systems
Moscato Cerletti, a rediscovered aromatic cultivar with oenological potential in warm and dry areas
Baron Antonio Mendola was devoted to the study of grapevine, applying ampelography and dabbling in crosses between cultivars in order to select new ones, of which Moscato Cerletti, obtained in 1869, was the most interesting. Grillo, one of the most important white cultivars in Sicily, was ascertained to be an offspring of Catarratto Comune and Zibibbo, the same parents which Mendola claimed he used to obtain Moscato Cerletti. Thus the hypothesis of synonymy between Moscato Cerletti and Grillo or the same parentage for both sets of parents needs to be verified. In the present study, historical documents were consulted and genetic analyses and ampelographic, agronomic and qualitative characterisation carried out to determine the distinctiveness of each cultivars. These were also compared with Catarratto Comune and Zibibbo in order to establish the Moscato Cerletti pedigree. Due to their different SSR profiles, Grillo and Moscato Cerletti were confirmed as two distinct cultivars; they also differed in ripening times and sugar storage ability, as well as in the aromatic grape produced by Moscato Cerletti only. The trio genotype genetic analysis confirmed that Zibibbo is a parent of Moscato Cerletti (justifying the aromatic grape), whilst the SSR profiles did not show Catarratto Comune to be a second parent. Moscato Cerletti was found to have oenological potential in the production of sparkling muscat wines due to its ability to adapt to a changing climate in warm and dry environments and in different winegrowing regions
Putting sharks on the map: A global standard for improving shark area-based conservation
Area-based conservation is essential to safeguard declining biodiversity. Several approaches have been developed for identifying networks of globally important areas based on the delineation of sites or seascapes of importance for various elements of biodiversity (e.g., birds, marine mammals). Sharks, rays, and chimaeras are facing a biodiversity crisis with an estimated 37% of species threatened with extinction driven by overfishing. Yet spatial planning tools often fail to consider the habitat needs critical for their survival. The Important Shark and Ray Area (ISRA) approach is proposed as a response to the dire global status of sharks, rays, and chimaeras. A set of four globally standardized scientific criteria, with seven sub-criteria, was developed based on input collated during four shark, biodiversity, and policy expert workshops conducted in 2022. The ISRA Criteria provide a framework to identify discrete, three-dimensional portions of habitat important for one or more shark, ray, or chimaera species, that have the potential to be delineated and managed for conservation. The ISRA Criteria can be applied to all environments where sharks occur (marine, estuarine, and freshwater) and consider the diversity of species, their complex behaviors and ecology, and biological needs. The identification of ISRAs will guide the development, design, and application of area-based conservation initiatives for sharks, rays, and chimaeras, and contribute to their recovery
Effects of vessel traffic on relative abundance and behaviour of cetaceans : the case of the bottlenose dolphins in the Archipelago de La Maddalena, north-western Mediterranean sea
Acknowledgements This study was part of the Tursiops Project of the Dolphin Research Centre of Caprera, La Maddalena. Financial and logistical support was provided by the Centro Turistico Studentesco (CTS) and by the National Park of the Archipelago de La Maddalena. We thank the Natural Reserve of Bocche di Bonifacio for the support provided during data collection. The authors thank the numerous volunteers of the Caprera Dolphin Research Centre and especially Marco Ferraro, Mirko Ugo, Angela Pira and Maurizio Piras whose assistance during field observation and skills as a boat driver were invaluable.Peer reviewedPostprin
- …