204 research outputs found
Changing shapes in the nanoworld
What are the mechanisms leading to the shape relaxation of three dimensional
crystallites ? Kinetic Monte Carlo simulations of fcc clusters show that the
usual theories of equilibration, via atomic surface diffusion driven by
curvature, are verified only at high temperatures. Below the roughening
temperature, the relaxation is much slower, kinetics being governed by the
nucleation of a critical germ on a facet. We show that the energy barrier for
this step linearly increases with the size of the crystallite, leading to an
exponential dependence of the relaxation time.Comment: 4 pages, 5 figures. Accepted by Phys Rev Let
Lattice Effects in Crystal Evaporation
We study the dynamics of a stepped crystal surface during evaporation, using
the classical model of Burton, Cabrera and Frank, in which the dynamics of the
surface is represented as a motion of parallel, monoatomic steps. The validity
of the continuum approximation treated by Frank is checked against numerical
calculations and simple, qualitative arguments. The continuum approximation is
found to suffer from limitations related, in particular, to the existence of
angular points. These limitations are often related to an adatom detachment
rate of adatoms which is higher on the lower side of each step than on the
upper side ("Schwoebel effect").Comment: DRFMC/SPSMS/MDN, Centre d'Etudes Nucleaires de Grenoble, 25 pages,
LaTex, revtex style. 8 Figures, available upon request, report# UBFF30119
Growth of Patterned Surfaces
During epitaxial crystal growth a pattern that has initially been imprinted
on a surface approximately reproduces itself after the deposition of an integer
number of monolayers. Computer simulations of the one-dimensional case show
that the quality of reproduction decays exponentially with a characteristic
time which is linear in the activation energy of surface diffusion. We argue
that this life time of a pattern is optimized, if the characteristic feature
size of the pattern is larger than , where is the surface
diffusion constant, the deposition rate and the surface dimension.Comment: 4 pages, 4 figures, uses psfig; to appear in Phys. Rev. Let
Spiral surface growth without desorption
Spiral surface growth is well understood in the limit where the step motion
is controlled by the local supersaturation of adatoms near the spiral ridge. In
epitaxial thin-film growth, however, spirals can form in a step-flow regime
where desorption of adatoms is negligible and the ridge dynamics is governed by
the non-local diffusion field of adatoms on the whole surface. We investigate
this limit numerically using a phase-field formulation of the
Burton-Cabrera-Frank model, as well as analytically. Quantitative predictions,
which differ strikingly from those of the local limit, are made for the
selected step spacing as a function of the deposition flux, as well as for the
dependence of the relaxation time to steady-state growth on the screw
dislocation density.Comment: 9 pages, 3 figures, RevTe
Hopping motion of lattice gases through nonsymmetric potentials under strong bias conditions
The hopping motion of lattice gases through potentials without
mirror-reflection symmetry is investigated under various bias conditions. The
model of 2 particles on a ring with 4 sites is solved explicitly; the resulting
current in a sawtooth potential is discussed. The current of lattice gases in
extended systems consisting of periodic repetitions of segments with sawtooth
potentials is studied for different concentrations and values of the bias.
Rectification effects are observed, similar to the single-particle case. A
mean-field approximation for the current in the case of strong bias acting
against the highest barriers in the system is made and compared with numerical
simulations. The particle-vacancy symmetry of the model is discussed.Comment: 8 pages (incl. 6 eps figures); RevTeX 3.
Numerical test of the damping time of layer-by-layer growth on stochastic models
We perform Monte Carlo simulations on stochastic models such as the
Wolf-Villain (WV) model and the Family model in a modified version to measure
mean separation between islands in submonolayer regime and damping time
of layer-by-layer growth oscillations on one dimension. The
stochastic models are modified, allowing diffusion within interval upon
deposited. It is found numerically that the mean separation and the damping
time depend on the diffusion interval , leading to that the damping time is
related to the mean separation as for the WV model
and for the Family model. The numerical results are in
excellent agreement with recent theoretical predictions.Comment: 4 pages, source LaTeX file and 5 PS figure
Kinetic roughening of surfaces: Derivation, solution and application of linear growth equations
We present a comprehensive analysis of a linear growth model, which combines
the characteristic features of the Edwards--Wilkinson and noisy Mullins
equations. This model can be derived from microscopics and it describes the
relaxation and growth of surfaces under conditions where the nonlinearities can
be neglected. We calculate in detail the surface width and various correlation
functions characterizing the model. In particular, we study the crossover
scaling of these functions between the two limits described by the combined
equation. Also, we study the effect of colored and conserved noise on the
growth exponents, and the effect of different initial conditions. The
contribution of a rough substrate to the surface width is shown to decay
universally as , where is
the time--dependent correlation length associated with the growth process,
is the initial roughness and the correlation length of the
substrate roughness, and is the surface dimensionality. As a second
application, we compute the large distance asymptotics of the height
correlation function and show that it differs qualitatively from the functional
forms commonly used in the intepretation of scattering experiments.Comment: 28 pages with 4 PostScript figures, uses titlepage.sty; to appear in
Phys. Rev.
Morphology of ledge patterns during step flow growth of metal surfaces vicinal to fcc(001)
The morphological development of step edge patterns in the presence of
meandering instability during step flow growth is studied by simulations and
numerical integration of a continuum model. It is demonstrated that the kink
Ehrlich-Schwoebel barrier responsible for the instability leads to an invariant
shape of the step profiles. The step morphologies change with increasing
coverage from a somewhat triangular shape to a more flat, invariant steady
state form. The average pattern shape extracted from the simulations is shown
to be in good agreement with that obtained from numerical integration of the
continuum theory.Comment: 4 pages, 4 figures, RevTeX 3, submitted to Phys. Rev.
Current-Induced Step Bending Instability on Vicinal Surfaces
We model an apparent instability seen in recent experiments on current
induced step bunching on Si(111) surfaces using a generalized 2D BCF model,
where adatoms have a diffusion bias parallel to the step edges and there is an
attachment barrier at the step edge. We find a new linear instability with
novel step patterns. Monte Carlo simulations on a solid-on-solid model are used
to study the instability beyond the linear regime.Comment: 4 pages, 4 figure
Diffusion processes and growth on stepped metal surfaces
We study the dynamics of adatoms in a model of vicinal (11m) fcc metal
surfaces. We examine the role of different diffusion mechanisms and their
implications to surface growth. In particular, we study the effect of steps and
kinks on adatom dynamics. We show that the existence of kinks is crucially
important for adatom motion along and across steps. Our results are in
agreement with recent experiments on Cu(100) and Cu(1,1,19) surfaces. The
results also suggest that for some metals exotic diffusion mechanisms may be
important for mass transport across the steps.Comment: 3 pages, revtex, complete file available from
ftp://rock.helsinki.fi/pub/preprints/tft/ or at
http://www.physics.helsinki.fi/tft/tft_preprints.html (to appear in Phys.
Rev. B Rapid Comm.
- …