204 research outputs found

    Changing shapes in the nanoworld

    Full text link
    What are the mechanisms leading to the shape relaxation of three dimensional crystallites ? Kinetic Monte Carlo simulations of fcc clusters show that the usual theories of equilibration, via atomic surface diffusion driven by curvature, are verified only at high temperatures. Below the roughening temperature, the relaxation is much slower, kinetics being governed by the nucleation of a critical germ on a facet. We show that the energy barrier for this step linearly increases with the size of the crystallite, leading to an exponential dependence of the relaxation time.Comment: 4 pages, 5 figures. Accepted by Phys Rev Let

    Lattice Effects in Crystal Evaporation

    Full text link
    We study the dynamics of a stepped crystal surface during evaporation, using the classical model of Burton, Cabrera and Frank, in which the dynamics of the surface is represented as a motion of parallel, monoatomic steps. The validity of the continuum approximation treated by Frank is checked against numerical calculations and simple, qualitative arguments. The continuum approximation is found to suffer from limitations related, in particular, to the existence of angular points. These limitations are often related to an adatom detachment rate of adatoms which is higher on the lower side of each step than on the upper side ("Schwoebel effect").Comment: DRFMC/SPSMS/MDN, Centre d'Etudes Nucleaires de Grenoble, 25 pages, LaTex, revtex style. 8 Figures, available upon request, report# UBFF30119

    Growth of Patterned Surfaces

    Full text link
    During epitaxial crystal growth a pattern that has initially been imprinted on a surface approximately reproduces itself after the deposition of an integer number of monolayers. Computer simulations of the one-dimensional case show that the quality of reproduction decays exponentially with a characteristic time which is linear in the activation energy of surface diffusion. We argue that this life time of a pattern is optimized, if the characteristic feature size of the pattern is larger than (D/F)1/(d+2)(D/F)^{1/(d+2)}, where DD is the surface diffusion constant, FF the deposition rate and dd the surface dimension.Comment: 4 pages, 4 figures, uses psfig; to appear in Phys. Rev. Let

    Spiral surface growth without desorption

    Full text link
    Spiral surface growth is well understood in the limit where the step motion is controlled by the local supersaturation of adatoms near the spiral ridge. In epitaxial thin-film growth, however, spirals can form in a step-flow regime where desorption of adatoms is negligible and the ridge dynamics is governed by the non-local diffusion field of adatoms on the whole surface. We investigate this limit numerically using a phase-field formulation of the Burton-Cabrera-Frank model, as well as analytically. Quantitative predictions, which differ strikingly from those of the local limit, are made for the selected step spacing as a function of the deposition flux, as well as for the dependence of the relaxation time to steady-state growth on the screw dislocation density.Comment: 9 pages, 3 figures, RevTe

    Hopping motion of lattice gases through nonsymmetric potentials under strong bias conditions

    Full text link
    The hopping motion of lattice gases through potentials without mirror-reflection symmetry is investigated under various bias conditions. The model of 2 particles on a ring with 4 sites is solved explicitly; the resulting current in a sawtooth potential is discussed. The current of lattice gases in extended systems consisting of periodic repetitions of segments with sawtooth potentials is studied for different concentrations and values of the bias. Rectification effects are observed, similar to the single-particle case. A mean-field approximation for the current in the case of strong bias acting against the highest barriers in the system is made and compared with numerical simulations. The particle-vacancy symmetry of the model is discussed.Comment: 8 pages (incl. 6 eps figures); RevTeX 3.

    Numerical test of the damping time of layer-by-layer growth on stochastic models

    Full text link
    We perform Monte Carlo simulations on stochastic models such as the Wolf-Villain (WV) model and the Family model in a modified version to measure mean separation \ell between islands in submonolayer regime and damping time t~\tilde t of layer-by-layer growth oscillations on one dimension. The stochastic models are modified, allowing diffusion within interval rr upon deposited. It is found numerically that the mean separation and the damping time depend on the diffusion interval rr, leading to that the damping time is related to the mean separation as t~4/3{\tilde t} \sim \ell^{4/3} for the WV model and t~2{\tilde t} \sim \ell^2 for the Family model. The numerical results are in excellent agreement with recent theoretical predictions.Comment: 4 pages, source LaTeX file and 5 PS figure

    Kinetic roughening of surfaces: Derivation, solution and application of linear growth equations

    Full text link
    We present a comprehensive analysis of a linear growth model, which combines the characteristic features of the Edwards--Wilkinson and noisy Mullins equations. This model can be derived from microscopics and it describes the relaxation and growth of surfaces under conditions where the nonlinearities can be neglected. We calculate in detail the surface width and various correlation functions characterizing the model. In particular, we study the crossover scaling of these functions between the two limits described by the combined equation. Also, we study the effect of colored and conserved noise on the growth exponents, and the effect of different initial conditions. The contribution of a rough substrate to the surface width is shown to decay universally as wi(0)(ξs/ξ(t))d/2w_i(0) (\xi_s/\xi(t))^{d/2}, where ξ(t)t1/z\xi(t) \sim t^{1/z} is the time--dependent correlation length associated with the growth process, wi(0)w_i(0) is the initial roughness and ξs\xi_s the correlation length of the substrate roughness, and dd is the surface dimensionality. As a second application, we compute the large distance asymptotics of the height correlation function and show that it differs qualitatively from the functional forms commonly used in the intepretation of scattering experiments.Comment: 28 pages with 4 PostScript figures, uses titlepage.sty; to appear in Phys. Rev.

    Morphology of ledge patterns during step flow growth of metal surfaces vicinal to fcc(001)

    Get PDF
    The morphological development of step edge patterns in the presence of meandering instability during step flow growth is studied by simulations and numerical integration of a continuum model. It is demonstrated that the kink Ehrlich-Schwoebel barrier responsible for the instability leads to an invariant shape of the step profiles. The step morphologies change with increasing coverage from a somewhat triangular shape to a more flat, invariant steady state form. The average pattern shape extracted from the simulations is shown to be in good agreement with that obtained from numerical integration of the continuum theory.Comment: 4 pages, 4 figures, RevTeX 3, submitted to Phys. Rev.

    Current-Induced Step Bending Instability on Vicinal Surfaces

    Full text link
    We model an apparent instability seen in recent experiments on current induced step bunching on Si(111) surfaces using a generalized 2D BCF model, where adatoms have a diffusion bias parallel to the step edges and there is an attachment barrier at the step edge. We find a new linear instability with novel step patterns. Monte Carlo simulations on a solid-on-solid model are used to study the instability beyond the linear regime.Comment: 4 pages, 4 figure

    Diffusion processes and growth on stepped metal surfaces

    Full text link
    We study the dynamics of adatoms in a model of vicinal (11m) fcc metal surfaces. We examine the role of different diffusion mechanisms and their implications to surface growth. In particular, we study the effect of steps and kinks on adatom dynamics. We show that the existence of kinks is crucially important for adatom motion along and across steps. Our results are in agreement with recent experiments on Cu(100) and Cu(1,1,19) surfaces. The results also suggest that for some metals exotic diffusion mechanisms may be important for mass transport across the steps.Comment: 3 pages, revtex, complete file available from ftp://rock.helsinki.fi/pub/preprints/tft/ or at http://www.physics.helsinki.fi/tft/tft_preprints.html (to appear in Phys. Rev. B Rapid Comm.
    corecore