530 research outputs found

    Unprecedented Success: How the Alternative for Germany Party Capitalized on Eastern German Economic Grievance and Euroscepticism in 2013 and 2014

    Full text link
    The Alternative for Germany party (AfD) has experienced a remarkably fast rise to state, federal, and European electoral success and has disrupted German politics. This paper investigates how the AfD achieved popularity in 2013 and 2014 and later became the first far-right German party since the Nazi Party to be represented in the Bundestag. I find that eastern Germany’s aging population and deficient economy engendered contempt for Angela Merkel and the Bundestag that transformed to euroscepticism when Germany committed to taxpayer bailouts of Greece during the eurozone debt crisis while ignoring domestic economic inequality. As such, the AfD’s single-issue platform of abolishing the euro resonated with these older, economically marginalized eastern German citizens who felt neglected by the German federal government and excluded from the benefits of the single currency. The findings of this paper, combined with the projected continuation of the trends that enabled the AfD’s rise, suggest that the far-right party will continue to erode the majority of the Union and will compel the Bundestag to reconsider its domestic economic priorities

    EUV Spectroscopy of Highly Charged Xenon Ions

    Get PDF

    Laser annealing of silicon on sapphire

    Get PDF
    Silicon-implanted silicon-on-sapphire wafers have been annealed by 50-ns pulses from a Q-switched Nd : YAG laser. The samples have been analyzed by channeling and by omega-scan x-ray double diffraction. After irradiation with pulses of a fluence of about 5 J cm^–2 the crystalline quality of the silicon layer is found to be better than in the as-grown state

    A theory for magnetic-field effects of nonmagnetic organic semiconducting materials

    Full text link
    A universal mechanism for strong magnetic-field effects of nonmagnetic organic semiconductors is presented. A weak magnetic field (less than hundreds mT) can substantially change the charge carrier hopping coefficient between two neighboring organic molecules when the magnetic length is not too much longer than the molecule-molecule separation and localization length of electronic states involved. Under the illumination of lights or under a high electric field, the change of hopping coefficients leads also to the change of polaron density so that photocurrent, photoluminescence, electroluminescence, magnetoresistance and electrical-injection current become sensitive to a weak magnetic field. The present theory can not only explain all observed features, but also provide a solid theoretical basis for the widely used empirical fitting formulas.Comment: 4 pages, 2 figure

    Precision Optical Measurements and Fundamental Physical Constants

    Get PDF
    A brief overview is given on precision determinations of values of the fundamental physical constants and the search for their variation with time by means of precision spectroscopy in the optical domain

    Electronic structure of wurtzite and zinc-blende AlN

    Get PDF
    The electronic structure of AlN in wurtzite and zinc-blende phases is studied experimentally and theoretically. By using x-ray emission spectroscopy, the Al 3p, Al 3s and N 2p spectral densities are obtained. The corresponding local and partial theoretical densities of states (DOS), as well as the total DOS and the band structure, are calculated by using the full potential linearized augmented plane wave method, within the framework of the density functional theory. There is a relatively good agreement between the experimental spectra and the theoretical DOS, showing a large hybridization of the valence states all along the valence band. The discrepancies between the experimental and theoretical DOS, appearing towards the high binding energies, are ascribed to an underestimation of the valence band width in the calculations. Differences between the wurtzite and zinc-blende phases are small and reflect the slight variations between the atomic arrangements of both phases

    Can spacetime curvature induced corrections to Lamb shift be observable?

    Full text link
    The Lamb shift results from the coupling of an atom to vacuum fluctuations of quantum fields, so corrections are expected to arise when the spacetime is curved since the vacuum fluctuations are modified by the presence of spacetime curvature. Here, we calculate the curvature-induced correction to the Lamb shift outside a spherically symmetric object and demonstrate that this correction can be remarkably significant outside a compact massive astrophysical body. For instance, for a neutron star or a stellar mass black hole, the correction is \sim 25% at a radial distance of 4GM/c24GM/c^2, \sim 16% at 10GM/c210GM/c^2 and as large as \sim 1.6% even at 100GM/c2100GM/c^2, where MM is the mass of the object, GG the Newtonian constant, and cc the speed of light. In principle, we can look at the spectra from a distant compact super-massive body to find such corrections. Therefore, our results suggest a possible way of detecting fundamental quantum effects in astronomical observations.Comment: 13 pages, 3 figures, slight title change, clarifications and more discussions added, version to be published in JHE

    The Acidic Tail of the Cdc34 Ubiquitin-conjugating Enzyme Functions in Both Binding to and Catalysis with Ubiquitin Ligase SCFC^(dc4*)

    Get PDF
    Ubiquitin ligases, together with their cognate ubiquitin-conjugating enzymes, are responsible for the ubiquitylation of proteins, a process that regulates a myriad of eukaryotic cellular functions. The first cullin-RING ligase discovered, yeast SCF^(Cdc4), functions with the conjugating enzyme Cdc34 to regulate the cell cycle. Cdc34 orthologs are notable for their highly acidic C-terminal extension. Here we confirm that the Cdc34 acidic C-terminal tail has a role in Cdc34 binding to SCF^(Cdc4) and makes a major contribution to the submicromolar K_m of Cdc34 for SCF^(Cdc4). Moreover, we demonstrate that a key functional property of the tail is its acidity. Our analysis also uncovers an unexpected new function for the acidic tail in promoting catalysis. We demonstrate that SCF is functional when Cdc34 is fused to the C terminus of Cul1 and that this fusion retains partial function even when the acidic tail has been deleted. The Cdc34-SCF fusion proteins that lack the acidic tail must interact in a fundamentally different manner than unfused SCF and wild type Cdc34, demonstrating that distinct mechanisms of E2 recruitment to E3, as is seen in nature, can sustain substrate ubiquitylation. Finally, a search of the yeast proteome uncovered scores of proteins containing highly acidic stretches of amino acids, hinting that electrostatic interactions may be a common mechanism for facilitating protein assembly

    Diagnostic du Covid-19 en milieu ambulatoire [COVID-19 Diagnosis]

    Get PDF
    The need to curb the circulation of SARS-CoV-2 virus in the community and to diagnose those at risk of developing complications implies that an appropriate test should be chosen according to the epidemiological and clinical context. Rapid antigen tests, either nasopharyngeal or nasal, have the advantage of reflecting contagiousness better than PCR and giving an immediate result, reason why they are used as first-line for community diagnosis and screening. A rapid test allows immediate management of outpatients and does not falsely attribute the current acute episode to a previous SARS-CoV-2 infection. PCR, whether nasopharyngeal or buccosalivary, is useful for epidemiological surveillance, including that of new variants, as well as identification of severe COVID in the post-infectious phase
    corecore