66 research outputs found

    Conceptual inconsistencies in finite-dimensional quantum and classical mechanics

    Full text link
    Utilizing operational dynamic modeling [Phys. Rev. Lett. 109, 190403 (2012); arXiv:1105.4014], we demonstrate that any finite-dimensional representation of quantum and classical dynamics violates the Ehrenfest theorems. Other peculiarities are also revealed, including the nonexistence of the free particle and ambiguity in defining potential forces. Non-Hermitian mechanics is shown to have the same problems. This work compromises a popular belief that finite-dimensional mechanics is a straightforward discretization of the corresponding infinite-dimensional formulation.Comment: 5 pages, 2 figure

    Compliance of a cobalt chromium coronary stent alloy – the COVIS trial

    Get PDF
    BACKGROUND: Cobalt chromium coronary stents are increasingly being used in percutaneous coronary interventions. There are, however, no reliable data about the characteristics of unfolding and visibility of this stent alloy in vivo. The aim of this study is to compare cobalt chromium coronary stents with conventional stainless steel stents using intracoronary ultrasound. METHODS: Twenty de novo native coronary stenoses ≤ 20 mm in length (target vessel reference diameter ≥ 2.5 and ≤ 4.0 mm) received under sequential intracoronary ultrasound either a cobalt chromium stent (Multi-Link Vision(®); n = 10) or a stainless steel stent (Multi-Link Zeta(®); n = 10). RESULTS: For optimal unfolding, the cobalt chromium stent requires a higher balloon deployment pressure (13.90 ± 2.03 atm) than the stainless steel stent (11.50 ± 2.12 atm). Furthermore, the achieved target vessel diameter of the cobalt chromium stent (Visibility-Index QCA/IVUS Multi-Link Vision(®)1.13 / Multi-Link Zeta(® )1.04) is more easily overrated by Quantitative Coronary Analysis. CONCLUSION: These data indicate that stent material-specific recommendations for optimal implantation pressure and different stent material with an equal design should both be considered in interpreting QCA-analysis

    Moving Atom-Field Interactions: Quantum Motional Decoherence and Relaxation

    Get PDF
    The reduced dynamics of an atomic qubit coupled both to its own quantized center of mass motion through the spatial mode functions of the electromagnetic field, as well as the vacuum modes, is calculated in the influence functional formalism. The formalism chosen can describe the entangled non-Markovian evolution of the system with a full account of the coherent back-action of the environment on the qubit. We find a slight increase in the decoherence due to the quantized center of mass motion and give a condition on the mass and qubit resonant frequency for which the effect is important. In optically resonant alkali-metal atom systems, we find the effect to be negligibly small. The framework presented here can nevertheless be used for general considerations of the coherent evolution of qubits in moving atoms in an electromagnetic field.Comment: 9 pages, 1 figure, minor change

    A generalized bag-like boundary condition for fields with arbitrary spin

    Get PDF
    Boundary conditions (BCs) for the Maxwell and Dirac fields at material surfaces are widely-used and physically well-motivated, but do not appear to have been generalized to deal with higher spin fields. As a result there is no clear prescription as to which BCs should be selected in order to obtain physically-relevant results pertaining to confined higher spin fields. This lack of understanding is significant given that boundary-dependent phenomena are ubiquitous across physics, a prominent example being the Casimir effect. Here, we use the two-spinor calculus formalism to present a unified treatment of BCs routinely employed in the treatment of spin-1/2 and spin-1 fields. We then use this unification to obtain a BC that can be applied to massless fields of any spin, including the spin-2 graviton, and its supersymmetric partner the spin-3/2 gravitino

    The Taming of Closed Time-like Curves

    Full text link
    We consider a R1,d/Z2R^{1,d}/Z_2 orbifold, where Z2Z_2 acts by time and space reversal, also known as the embedding space of the elliptic de Sitter space. The background has two potentially dangerous problems: time-nonorientability and the existence of closed time-like curves. We first show that closed causal curves disappear after a proper definition of the time function. We then consider the one-loop vacuum expectation value of the stress tensor. A naive QFT analysis yields a divergent result. We then analyze the stress tensor in bosonic string theory, and find the same result as if the target space would be just the Minkowski space R1,dR^{1,d}, suggesting a zero result for the superstring. This leads us to propose a proper reformulation of QFT, and recalculate the stress tensor. We find almost the same result as in Minkowski space, except for a potential divergence at the initial time slice of the orbifold, analogous to a spacelike Big Bang singularity. Finally, we argue that it is possible to define local S-matrices, even if the spacetime is globally time-nonorientable.Comment: 37 pages, LaTeX2e, uses amssymb, amsmath and epsf macros, 8 eps and 3 ps figures; (v2): Two additional comments + one reference added; (v3): corrections in discussion of CTCs + some clarification

    Resumming the large-N approximation for time evolving quantum systems

    Get PDF
    In this paper we discuss two methods of resumming the leading and next to leading order in 1/N diagrams for the quartic O(N) model. These two approaches have the property that they preserve both boundedness and positivity for expectation values of operators in our numerical simulations. These approximations can be understood either in terms of a truncation to the infinitely coupled Schwinger-Dyson hierarchy of equations, or by choosing a particular two-particle irreducible vacuum energy graph in the effective action of the Cornwall-Jackiw-Tomboulis formalism. We confine our discussion to the case of quantum mechanics where the Lagrangian is L(x,x˙)=(1/2)i=1Nx˙i2(g/8N)[i=1Nxi2r02]2L(x,\dot{x}) = (1/2) \sum_{i=1}^{N} \dot{x}_i^2 - (g/8N) [ \sum_{i=1}^{N} x_i^2 - r_0^2 ]^{2}. The key to these approximations is to treat both the xx propagator and the x2x^2 propagator on similar footing which leads to a theory whose graphs have the same topology as QED with the x2x^2 propagator playing the role of the photon. The bare vertex approximation is obtained by replacing the exact vertex function by the bare one in the exact Schwinger-Dyson equations for the one and two point functions. The second approximation, which we call the dynamic Debye screening approximation, makes the further approximation of replacing the exact x2x^2 propagator by its value at leading order in the 1/N expansion. These two approximations are compared with exact numerical simulations for the quantum roll problem. The bare vertex approximation captures the physics at large and modest NN better than the dynamic Debye screening approximation.Comment: 30 pages, 12 figures. The color version of a few figures are separately liste

    Закономерности распределения и аккумуляции ртути в представителях ихтиофауны озера Байкал (Республика Бурятия)

    Get PDF
    Изучена экологическая ситуация в районе озера Байкал, особенности и закономерности распределения и аккумуляции ртутив представителях ихтиофауны озера Байкал.The ecological situation in the area of Baikal lakes, the features of the distribution and accumulation of reserves in Baikal are studied

    Анализ технологий по предупреждению формирования газовых гидратов на Заполярном нефтегазоконденсатном месторождении (ЯНАО)

    Get PDF
    Объектами исследования являются осложнения, возникающие при гидратоотложении в системах сбора и транспортировки газа. Предметом исследования являются комплексные методы предупреждения образования гидратов природного газа. Цель выпускной квалификационной работы – анализ методов и технологий защиты промыслового оборудования от осложнений, вызванных гидратообразованием.The objects of the following research are the problems appearing from the hydrate formation in gas gathering facilities and transportation systems. The subjects of the research are complex methods of preventing the formation of natural gas hydrates. The purpose of the graduation thesis is to analyze methods and technologies for protecting field equipment from problems caused by hydrate formation
    corecore