296 research outputs found

    Laser-induced alignment and anti-alignment of rotationally excited molecules

    Get PDF
    We numerically investigate the post-pulse alignment of rotationally excited diatomic molecules upon nonresonant interaction with a linearly polarized laser pulse. In addition to the simulations, we develop a simple model which qualitatively describes the shape and amplitude of post-pulse alignment induced by a laser pulse of moderate power density. In our treatment we take into account that molecules in rotationally excited states can interact with a laser pulse not only by absorbing energy but also by stimulated emission. The extent to which these processes are present in the interaction depends, on the one hand, on the directionality of the molecular angular momentum (given by the M quantum number), and on the other hand on the ratio of transition frequencies and pulse duration (determined by the J number). A rotational wave packet created by a strong pulse from an initially pure state contains a broad range of rotational levels, over which the character of the interaction can change from non-adiabatic to adiabatic. Depending on the laser pulse duration and amplitude, the transition from the non-adiabatic to the adiabatic limit proceeds through a region with dominant rotational heating, or alignment, for short pulses and a large region with rotational cooling, and correspondingly preferred anti-alignment, for longer pulses

    State Selection in Non-Resonantly Excited Wave Packets by Tuning from Non-Adiabatic to Adiabatic Interaction

    Get PDF
    We show for rotational alignment of diatomic molecules that the crossover from non-adiabatic to adiabatic limits is well described by a convolution of excitation pulse envelope and sinusoidal molecular response and that it takes place in a uniform way in the region between 0.1 and 1 for the ratio of pulse duration to rotational period. In a non-resonant Raman-type excitation, this crossover is used to manipulate the J composition of a rotational wave packet with respect to the initial thermal distribution. By optimizing the duration of a single pulse, arbitrarily narrow distributions at low J levels can be formed. A double pulse excitation, where a longer second pulse acts as a selective dump pulse, allows to prepare non-thermal distributions centered at high J values. With the alignment signal on top of an isotropic background, experimental techniques sensitive to the induced anisotropy are optimally suited for implementation. To demonstrate the efficiency of the method, numerical simulations are carried out for rotational alignment in 14N2 at various experimentally relevant laser intensities. The scheme is transferable to quantum systems with a significant variation of transition frequencies between subsequent levels

    Time-Dependent Alignment of Molecules Trapped in Octahedral Crystal Fields

    Get PDF
    The hindered rotational states of molecules confined in crystal fields of octahedral symmetry, and their time-dependent alignment obtained by pulsed nonresonant laser fields, are studied computationally. The control over the molecular axis direction is discussed based on the evolution of the rotational wave packet generated in the cubic crystal-field potential. The alignment degree obtained in a cooperative case, where the alignment field is applied in a favorable crystal-field direction, or in a competitive direction, where the crystal field has a local maximum, is presented. The investigation is divided into two time regimes where the pulse duration is either ultrashort, leading to nonadiabatic dynamics, or long with respect to period of molecular libration, which leads to synchronous alignment due to nearly adiabatic following. The results are contrasted to existing gas phase studies. In particular, the irregularity of the crystal field energies leads to persistent interference patterns in the alignment signals. The use of nonadiabatic alignment for interrogation of crystal-field energetics and the use of adiabatic alignment for directional control of molecular dynamics in solids are proposed as practical applications

    Aligning and Orienting Molecules Trapped in Octahedral Crystal Fields

    Get PDF
    The effect of external fields on directional states of a linear molecule trapped in a crystal field of octahedral symmetry is studied numerically. Adiabatic field-dressed energy levels are obtained by solving the time-independent Schrödinger equation for the rotational degrees of freedom of the confined molecule. In the absence of external fields, the internal, octahedral crystal field serves to transform free-rotor states to angularly confined librational states of defined parity which arrange in near-degenerate sets of high multiplicity. Interaction of a linearly polarized, nonresonant laser field with the polarizability or of a static electric field with the dipole moment create alignment or orientation of the molecular axis, respectively. In the latter case, the combined effect of internal (octahedral) and external static field is instrumental in creating orientation by coupling different tunneling states. Depending on the polarization direction of the external fields with respect to the symmetry axes provided by the crystal field, cooperative and competitive effects are distinguished. If the direction of the external field coincides with the minima of the crystal field, high degrees of alignment or orientation can be achieved for specific states, even for low field strengths. Otherwise, high efficiency of this mechanism is restricted to high fields and low temperatures. Strategies for an experimental realization are outlined

    Intense-Field Alignment of Molecules Confined in Octahedral Field

    Get PDF
    The combined effect of static octahedral potential and anisotropic interaction with intense linearly polarized light on the rotational motion of linear molecules is investigated. Avoided crossings of quantized energy levels corresponding to pendular states with different degree of alignment are found by varying the strength parameters for the light and static fields. High alignment is achieved for both co-operative and competitive choices of the relative directionality of the two fields, thus presenting means for controlling dynamics of impurity centers with respect to the surrounding media

    Vibrational Overtones and Rotational Structures of HCl in Rare Gas Matrices

    Get PDF
    The rotational structure in the vibrational transitions from ν=0 to ν=1,2,3,4 of H35Cl and H37Cl is studied in Xe, Kr and Ar matrices with high spectral resolution. A consistent set of rotational constants Bv for the vibrational levels ν=0 to 4 is derived. B0 decreases with the tightness of the cage from 9.78 cm-1 in Xe to 8.83 cm-1 in Ar for H35Cl (gas phase 10.44 cm-1). The values for B0 to B4 decrease linearly with v due to the vibration-rotation-coupling constant α which increases from 0.37 cm-1 in Xe to 0.479 cm-1 in Ar (gas 0.303) according to the cage tightness. The splitting of the R(1) transition which originates from the hindering of rotation is analyzed in Xe using the T2g-T1u and T2g-Eg transition energies. A comparison with force field calculations yields a dominant contribution of the 6th spherical harmonic YA1g6 of the octahedral matrix potential. The modulation of the potential takes a value of K6/B=17 which corresponds to a barrier for the rotation of 160 cm-1. The splitting increases with the vibrational level v which can be interpreted as a weak admixture of the YA1g4 spherical harmonic. A large isotope effect and a reduction of the T1u-A1g transition energy (R(0)-transition) beyond the crystal field value are attributed to an excentric rotation with a displacement of the center of mass of the order of 0.05 Å. The vibrational energies ωe show an opposite trend with matrix atom size and decrease with polarizability from 2970 cm-1 in Ar to 2945.4 cm-1 in Xe (gas 2989.9 cm-1) while the anharmonicity ωeχe of the free molecule lies close to the Kr value and thus between that of Ar and Xe

    Particle transport phenomena in low temperature solids

    No full text
    We review different approaches to measure the transport of F atoms and ions in rare gas matrices and compare the experimental results to simulations. Static measurements on sandwich structures and co-doped matrices yield rather long travel ranges beyond 2 nm, in accord with early classical simulations which predict a channeling of the F atoms in rare gas matrices. Nonadiabatic simulations show a rapid energy loss, fast nonadiabatic dynamics and only short travel ranges of typically 1 unit cell. The rapid energy loss, fast nonadiabatic transitions and the timescale for direct dissociation (~ 250 fs) are verified by fs-pump-probe experiments. It remains a challenge to account for the long-range migration when nonadiabatic processes are allowed in simulations, and to measure the long distance flights directly by ultrafast spectroscopy

    Photodynamics and Ground State Librational States of ClF Molecule in solid Ar. Comparison of experiment and theory

    Get PDF
    Photodynamics calculations of a ClF molecule in solid Ar are compared to experimental results and a new interpretation is given for the observed femtosecond-pump-probe signal modulation. We analyze the round-trip and depolarization times for the excited state wave-packet motion and discuss the incorporation of lattice cage motions that partially explain the time dependence of the measured signal. Librational eigenstates and -energies are calculated by solving the rotational Schrödinger equation in the previously computed [T. Kiljunen, M. Bargheer, M. Gühr, and N. Schwentner, Phys. Chem. Chem. Phys. 6 (9), 2185-2197 (2004)] octahedral potentials that hinder free molecular rotation in the solids. The obtained level structure is compared to infrared-spectroscopic results. We comment on the correspondence between temperature effects in the classical dynamics of the nuclei and the quantum mechanical probability distributions. We find the combinative treatment of different simulation temperatures congruous for interpreting the experimental results at cryogenic conditions

    Luminescence and formation of alkalihalide ionic excimers in solid Ne and Ar

    No full text
    Transitions from ionic states A²⁺X– of alkalihalides CsF, CsCl and RbF isolated in solid Ne and Ar films recorded under pulsed e-beam excitation are studied. The B(²∑₁/₂)-X(²∑₁/₂) and C(²П₃/₂)-A(²П₃/₂) luminescence bands of Cs2+F– (196.5 nm, 227 nm), Cs²⁺Cl– (220.1 nm, 249.2 nm) and Rb²⁺F– (136 nm) in Ne, and a weakerB–X emission of Cs²⁺F– (211.2 nm) in Ar are identified. For CsF the depopulation of the A²⁺X– state is dominated by the radiative decay. A ratio of the recorded exciplex emission intensities of I(CsF)/I(CsCl)/I(RbF) = 20/5/1 reflects the luminescence efficiency and for RbF and CsCl a competitive emission channel due to predissociation in the A²⁺X⁻(B²∑₁/₂) state is observed. For these molecules an efficient formation of the state X*₂ is confirmed through recording the molecular D`(³П₂g)-A`(³П₂u) transition. A strong dependence of the luminescence intensities on the alkalihalide content reveals quenching at concentrations higher than 0.7%

    Star Marketing

    Get PDF
    Perusahaan membutuhkan strategi untuk sukses dan berkembang, STAR Marketing merupakan konsep yang banyak membantu perusahaan menjadi maju dan berkembang. Perusahaan perlu melakukan scan market area mereka dengan baik dan benar, selanjutnya diikuti dengan perumusan strategi marketing yang efektif dan tertuang didalam marketing plan. Implementasi marketing plan sesuai dengan jadwal yang telah direncanakan juga sangatlah penting, rencana tanpa implementasi tidak akan memberikan hasil yang maksimal, oleh karena itu strategy marketing yang telah diimplementasi juga perlu direcheck untuk mengetahui efektivitas marketing plan yang telah dilaksanakan. Efektivitas marketing plan dapat diketahui dari perkembangan penjualan, merek menjadi semakin dikenal dan kepuasan pelanggan yang semakin meningkat. Perusahaan juga membutuhkan sistem yang baik, mudah diaplikasikan, mampu merekam semua aktivitas bisnis perusahaan, efisiensi waktu, mampu mendeteksi kecurangan-kecurangan yang terjadi, mampu dijadikan sebagai standar operasional untuk melayani pelanggan perusahaan, mampu dijadikan sebagai pedoman kerja bagi setiap staf dan pejabat perusahaan serta mampu untuk mengetahui langganan perusahaan dengan baik. Sistem dan Strategi yang baik membutuhkan sumber daya manusia yang berkualitas
    corecore