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Abstract

The effect of external fields on directional states of a linear molecule trapped in a crystal field

of octahedral symmetry is studied numerically. Adiabatic field-dressed energy levels are obtained

by solving the time-independent Schrödinger equation for the rotational degrees of freedom of the

confined molecule. In the absence of external fields, the internal, octahedral crystal field serves to

transform free-rotor states to angularly confined librational states of defined parity which arrange

in near-degenerate sets of high multiplicity. Interaction of a linearly polarized, nonresonant laser

field with the polarizability or of a static electric field with the dipole moment create alignment or

orientation of the molecular axis, respectively. In the latter case, the combined effect of internal

(octahedral) and external static field is instrumental in creating orientation by coupling different

tunneling states. Depending on the polarization direction of the external fields with respect to the

symmetry axes provided by the crystal field, cooperative and competitive effects are distinguished.

If the direction of the external field coincides with the minima of the crystal field, high degrees of

alignment or orientation can be achieved for specific states, even for low field strengths. Otherwise,

high efficiency of this mechanism is restricted to high fields and low temperatures. Strategies for

an experimental realization are outlined.
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I. INTRODUCTION

Efforts in molecular alignment and orientation are highly motivated by noting that many

chemical reactions depend crucially on the relative orientation of the reactants [1, 2]. In

creating a certain alignment or orientation, one needs to rotate the molecules, which is

closely connected to other research fields where the manipulation of external degrees of

freedom plays a decisive role, e.g., in molecular scale devices like switches and motors [3–5].

Alignment is also a necessary precondition in tomographic imaging of molecular orbitals

by intense laser pulses [6, 7]. A related, complementary technique applicable for aligned

or oriented molecules is recently established for sub-femtosecond temporal resolution of

molecular structure [8, 9].

There is a long line of studies of successful theoretical and experimental work on the

manipulation of molecular alignment in the gas phase, for a review see Ref. [10]. A ro-

bust and efficient mechanism proceeds via intense, near- or nonresonant laser fields. The

interaction with the anisotropic polarizability of a molecule induces a dipole moment which,

in turn, causes a coupling to the external field [11–15]. The resulting pendular states are

superpositions of the field-free rotor states and the molecular axis librates about the polar-

ization direction of the field [16, 17]. These states occur in pairs of different parity which

are connected by tunneling through the barrier provided by the light-induced potential. If,

in addition, a static field is applied, oriented molecular states can be formed as superposi-

tions of tunneling pairs of pendular states [18, 19]. This concept has been experimentally

realized for molecules both in gas phase [20, 21] and in small rare gas clusters [22, 23]. For

the combined fields, the necessary electric field strengths may be much lower than in the

pendular orientation approach using static fields alone [1, 24].

In contrast, the manipulation of rotational states of molecular impurities embedded in

solid state matrices is yet an essentially unexplored field. The main difference is that the

rotational motion of molecules in solid matrices is governed by an internal field, often referred

to as crystal field, describing the interaction with the surroundings. Upon increasing its

strength, the rotational motion becomes more and more hindered. Finally, the molecular

rotational states approach the limit of librational states describing angular oscillations about

preferred crystallographic axes [25, 26]. Correspondingly, the J-level degeneracies g = 2J+1

of the free-rotor states are lifted as hindered rotor states A(g = 1), E(g = 2), and T (g = 3)
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of cubic symmetry are formed in combinations of |J,M〉 states [27]. For a very strong

crystal field, these levels group together in states with again high multiplicities defined by

the librational quantum number n = 0, 1, . . . so that the degeneracies become g = 6(n + 1),

g = 8(n + 1), or g = 12(n + 1) for the n-th librationally excited state with 〈100〉, 〈111〉,
or 〈110〉 directionality, respectively. In between these limiting cases the states are found

in near-degenerate sets asymptotically correlating to a librational state. In analogy to the

case of gas phase molecules, interconversion between the states is possible by means of

two-dimensional tunneling in the plane spanned by the angular coordinates [28]. In the

following, the manipulation of the rotational motion of molecules in crystals by resonant or

nonresonant fields can be categorized by the following limits: Fields are termed as strong

if they can achieve notable mixing of states belonging to different multiplets, while weak

fields can only mix states inside a single multiplet. Equivalently, in the first case systems

are driven above rotational barriers, while they can tunnel through the barriers in the

second case. In analogy, temperatures are considered as high or low, if the thermal energies

are sufficient or insufficient to overcome rotational barriers, respectively. Accordingly, the

statistical Boltzmann weights of states within a multiplet are approximately equal or notably

different for high or low temperatures, respectively.

The case of intense-field alignment of molecules in octahedral matrices has been inves-

tigated in our previous study [29]. On the one hand, there may be competition between

internal (crystal) and external (light-induced) fields if the polarization of the external field

does not coincide with one of the preferred crystallographic axes. On the other hand, the

crystal field may also lead to enhancement of alignment compared to a free rotor, if the two

fields cooperate. In the present work we extend the preliminary studies of Ref. [29] in two

directions: In addition to a more detailed investigation of alignment considering polarization

along different lattice directions, we explore the possibility for orientation of molecules in

matrices. To this end, we proceed in analogy to the above described combined effect, where

gas phase molecules are simultaneously subject to both intense radiative and weak static

fields [18–23]. For the molecule embedded in a solid, we show that the use of two simulta-

neous external fields is not necessary: Instead, the internal matrix field can play a similar

role as the alignment field in providing the tunneling multiplets of pendular states. Those

can be manipulated by a weak static field to induce orientation effects. In particular, it is

expected that for increasing internal field the tunneling splitting among librational states
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decreases, thus reducing the required static field strengths to values far below those required

for pendular orientation. The efficiency of both the alignment and orientation through the

laser and static fields, respectively, competes with thermal averaging. We investigate the

desired effects not only assuming specific initial states, but the results are computed for dif-

ferent temperatures also, concentrating on low-temperature ensembles, i.e., the energetically

lowest multiplet correlating with ground librational state.

In this article, Sec. II presents a simplified model for a confined linear rotor interact-

ing with the crystal, alignment, and static fields, and describes the solution of the time-

independent Schrödinger equation using symmetry-adaption techniques. Then, the adiabatic

properties of eigenstates in the chosen octahedral field are described for the rotor–librator

in the absence of external fields (Sec. III). The resulting rotational densities are manipu-

lated by external fields, first for alignment in Sec. IV and then for orientation in Sec. V.

Field-induced shifts of energy levels are presented along with discussion on the property ex-

pectation values, and conclusions are drawn finally in Sec. VI, where also the experimental

feasibility is discussed.

II. COMPUTATIONAL METHOD

We consider a linear molecule in an electronically nondegenerate 1Σ state translationally

caged by a cubic crystal field of octahedral symmetry. This is often realized for impurities

which are small enough to fit in a mono-substitutional lattice site such that their rotational

motions are only moderately influenced by the surroundings. For instance, hydrogen halides

or other small diatomic molecules in solid rare gases [30, 31], in alkali halide crystals [32, 33],

or at interstitial sites of the fullerite [34, 35] come into question.

The confined (heteronuclear, prolate) molecule exhibits a permanent dipole moment µ

along the molecular axis, and has polarizability components parallel (α‖) and perpendicular

(α⊥) to it (∆α = α‖ − α⊥ > 0). The molecule is subject either to an intense, nonresonant

laser field EL or to a weak, static electric field ES. The linear polarization direction of the

nonresonant or static field is varied such that it lies along one of 〈100〉, 〈111〉, or 〈110〉 crys-

tallographic axes (class of symmetry equivalent directions). The interaction then depends on

the polar angle θ between the molecular axis and the field direction defining the laboratory

frame, and on the orientation of the solid cage frame (θ′, φ′) with respect to it.
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We write the time-independent Hamiltonian for the embedded molecule as

Ĥ/B = (Ĵ/~)2 + V̂κ + V̂α + V̂µ , (1)

and thereby neglect the coupling of rotational and translational motion of the impurity

molecule [36, 37]: The molecular center of mass (c.m.) is fixed at a substitutional lattice

site, and Ĵ is the angular momentum operator having its origin at the c.m. Furthermore,

translational motion of the c.m. is neglected in the model as we assume that the center of

interaction (c.i.) coincides with the c.m. Eccentric motion about a fixed c.i. can, however, be

accounted for by an appropriate down-scaling of the rotational constant B = ~2/(2I) [38, 39].

For the temperatures involved in the present work, the rotations can not couple effectively to

either vibrations [4] or electronic excitations of the guest (rotronic coupling, [40]). Moreover,

we neglect any coupling between the external fields and the surrounding matrix. This is

justified for rare gases as long as the intensities are below specific breakthrough and damage

thresholds.

We present the octahedral potential due to the solid surrounding as

Vκ(θ
′, φ′; κ) = κ [K4V4(θ

′, φ′) + K6V6(θ
′, φ′)] , (2)

where κ is a strength parameter, K4 and K6 values determine the shape, and the angular

functions V4(θ
′, φ′) and V6(θ

′, φ′) are surface harmonics of the Oh point group (see Sec. III).

We concentrate solely on the angular degrees of freedom (θ′, φ′) of the guest molecule and

neglect possible deformations of the matrix in accommodating the impurity. This approxi-

mation complements the earlier work [38, 41–44] where the radial coordinate has played a

major role in coupling the guest motions to various host modes.

The laser interaction part leads to the effective, instantaneous potential of form

Vα(θ; ∆ω) = −(∆ω cos2 θ + ω⊥) , (3)

and the potential in the static field is given by

Vµ(θ; ω) = −ω cos θ . (4)

The interaction parameters used are dimensionless [18]: ω‖,⊥ = E2
Lα‖,⊥/(4B) with ∆ω = ω‖−

ω⊥, κ is in units of B, and ω = µES/B. As usual [19], the additive constant ω⊥ is omitted in

Eq. (3). For practical units, the conversions are: ES[kV cm−1] = ωB[cm−1]/(0.0168 µ[Debye])

and I0[W cm−2] = ∆ωB[cm−1]/(10−11∆α[Å
3
]).
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TABLE I: Correlation table for the octahedral (Oh) point group and its subgroups obtained for

nonresonant polarizability interaction (D∞h) with light polarized along fourfold 〈100〉, threefold

〈111〉, and twofold 〈110〉 axes of symmetry. Correlations for the ungerade (u) representations are

obtained by replacing indices g with u throughout the table.

Oh D4h 〈100〉 D3d 〈111〉 D2h 〈110〉
A1g A1g A1g A1g

A2g B1g A2g B1g

Eg A1g + B1g Eg A1g + B2g

T1g A2g + Eg A2g + Eg B2g + B1g + B3g

T2g B2g + Eg A1g + Eg A1g + B1g + B3g

The Schrödinger equation corresponding to Eq. (1) is solved in spherical harmonics ba-

sis {YJ,M(θ, φ)} with Jmax = 26. The interaction matrices consist exclusively of elements

of type 〈YJ,M |Yl,m|YJ ′,M ′〉 which allows for convenient analytic evaluation with the Gaunt

formula derived from the Clebsch–Gordan series [45]. To reduce the size of the basis set,

symmetry adaption techniques are employed [46–48]. In particular, only symmetry-adapted

surface harmonics of the same irreducible representation are coupled by a totally symmetric

Hamiltonian. While the crystal field alone possesses octahedral (Oh) symmetry, the sym-

metry is lowered in the presence of interaction with external fields. The correlations for the

appropriate subgroups of the crystal Oh are shown in Tables I and II. When needed for

clarity in the text, we give the parent representation belonging to Oh in parentheses after

the symbol, i.e., A1(Eg) means that this A1 originates from the Eg representation in zero

external fields.

III. LIBRATION IN THE OCTAHEDRAL POTENTIAL

Because the main observables in the present work are the 〈cos2 θ〉 for alignment and

〈cos θ〉 for orientation, characterized by the angle θ between the molecular axis and the field

polarization vector, it is convenient to work in space-fixed reference frame defined by the

external field, and expand the rotational wave functions in these laboratory coordinates. The

external fields (discussed in Secs. IV and V) are applied in three different directions [001],
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TABLE II: Same as Table I but for static dipole interaction (C∞v). Correlations for the ungerade

(u) representations are obtained by interchanging indices 1 and 2 for the subgroup representations.

Oh C4v 〈100〉 C3v 〈111〉 C2v 〈110〉
A1g A1 A1 A1

A2g B1 A2 B1

Eg A1 + B1 E A1 + B1

T1g A2 + E A2 + E A2 + B1 + B2

T2g B2 + E A1 + E A1 + A2 + B2

TABLE III: Weight factors (K4, K6) and rotated octahedral potential components (V4, V6)

with light field polarized along a fourfold 〈100〉, threefold 〈111〉, or twofold 〈110〉 axis

of symmetry. Expansion in laboratory coordinate spherical harmonics YJ,M (θ, φ) =

(−1)M
√

2J+1
4π

√
(J−M)!
(J+M)!P

M
J (cos θ)eiMφ for M ≥ 0 and PM

J are the associated Legendre polyno-

mials. For negative M holds: YJ,−M (θ, φ) = (−1)MY ∗
J,M (θ, φ). Note that this convention differs

from that used in Ref. [48].

K4 −52
√

π/(11
√

21)

[001] 1
6 [
√

21 Y4,0 +
√

15/2 (Y4,4 + Y4,−4)]

V4(θ′, φ′) [111] 1
9 [−√21Y4,0 +

√
30 (Y4,3 − Y4,−3)]

[110] 1
24 [−√21Y4,0 −

√
210 (Y4,2 + Y4,−2) + 3

√
15/2 (Y4,4 + Y4,−4)]

K6 16
√

π/(11
√

26)

[001] 1
4 [
√

2Y6,0 −
√

7 (Y6,4 + Y6,−4)]

V6(θ′, φ′) [111] 1
54 [24

√
2Y6,0 −

√
420 (Y6,3 − Y6,−3) +

√
462 (Y6,6 + Y6,−6)]

[110] 1
64 [−26

√
2 Y6,0 +

√
210 (Y6,2 + Y6,−2) + 5

√
28 (Y6,4 + Y6,−4) +

√
462 (Y6,6 + Y6,−6)]

[111], and [110] with respect to the confining crystal. Therefore, the internal crystal-field

potential expressed by the two lowest order nontrivial surface harmonics V4 and V6 of Oh

point-group symmetry must be rotated accordingly. This is achieved by use of the Wigner

rotation matrices [45] and the results are given in Table III.

Different hindering potential shapes for rotation occur in solid-state matrices, and thereby
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FIG. 1: (Color online) The octahedral model potential Vκ(θ′, φ′)/κ with minima at the 〈100〉,
saddle points at the 〈110〉, and maxima at the 〈111〉 axes of symmetry. The external fields are

applied along [001] (θ′ = 0), [110] (θ′ = π/2, φ′ = π/4), or [111] (θ′ = cos−1 1/
√

3, φ′ = π/4)

directions.

various directional states can exist. The potential given by Eq. (2) resembles the Devonshire

model (K6 = 0) [27, 28, 40, 49, 50] in that the minima occur in the six 〈100〉 directions with

Vmin/κ = −1. However, the two-parameter construction including V6 sets the saddle point

energy in the twelve 〈110〉 directions to zero, independent of κ (Devonshire: 1/4). Potential

energy maxima are found in the eight 〈111〉 directions with Vmax/κ = 10/9 (Devonshire:

2/3). The first octant of the potential is plotted in Fig. 1. Here, the laboratory coordinate

frame (θ, φ) coincides with the single crystal frame (θ′, φ′) and minima are found at θ = 0

or π; θ = π/2, φ = 0, ±π/2 or π. Consequently, the model potential tends to arrange the

rotational density along the 〈100〉 directions. For increasing strength of the crystal field,

more rotational states become bound with respect to the barriers at 〈110〉 (En(κ) < 0) and at

〈111〉 (En(κ) < 10κ/9), see Fig. 2. We assign the states Vmin < En ≤ 0 to a librator and the

states 0 < En ≤ Vmax to a hindered rotor. Note that also for the higher states En > Vmax the

energies and shapes of the rotational densities are affected, however, they are not restricted

to occupy preferred directions only. The zero potential line essentially distinguishes the

tunneling regime from classical rotations for directional changes of a molecule. Our choice

for Eq. (2) corresponds to the simplest (lowest multiplicity, g = 6) case for presenting the

directional nature of the librational states in octahedral fields [28, 49].
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The calculated energy levels En(κ; Vα = Vµ = 0) in Fig. 2 depict the correlation from a

freely rotating (κ = 0) to a librating molecule. The potential minimum, saddle height, and

maximum energies are indicated by the dashed lines for classifying the nature of rotational

states. Considering a transition of a molecule from one minimum energy orientation to

another, the regime below the zero potential line belongs to tunneling, whereas the above

states are angularly delocalized and molecules experience rather a rotational diffusion type

mechanism. The set of three lowest levels with symmetries of A1g (circles), T1u (points), and

Eg (squares) correlate to the J = 0, 1, 2 free-rotor states, respectively. A rotational density

plot corresponding to the lowest energy component A1g is inserted to present the angular

confinement at κ = 25. The lobes of the three dumb-bells lie along the x, y, z coordinate axes

in the (Cartesian) reference frame of the crystal. The other densities within the lowest energy

librational manifold map the same angular space but each of them does so partially: Each

T1u is a single dumb-bell (cylindrical symmetry). The T1u,3 density, for instance, occupies

the z axis directions only as it exclusively consists of |J,M = 0〉 states. The Eg states can be

schematically written as Eg,1 = |2,±2〉+ |4,±2〉+ |6,±2〉+ |6,±6〉 . . ., i.e., two dumb-bells

spanning the horizontal (x, y) plane, and Eg,2 = |2, 0〉+ |4, 0〉+ |4,±4〉 . . ., i.e., similar to the

drawn A1g but the vertical dumb-bell is emphasized over the two in perpendicular plane.

Next, we consider a cut at κ = 25 where only the sixfold, nearly degenerate ground state

(three closely separated tunneling states A1g, T1u, and Eg) at E ≈ −7B (zero-point energy

EZP ≈ 18B) is close to librational limit while the higher states belong to hindered rotors.

The energy gap to these states (crystal-field splitting) is more than 13B. In contrast, the

tunneling splitting is much smaller: 0.71B for A1g–T1u and 0.43B for T1u–Eg. The rotational

density of A1g ground state is drawn in Fig. 2. Corresponding expansion coefficients of the

state vector in terms of D4h, D3d, or D2h subgroup surface harmonics given in Table IV are

qualitatively similar to those of the V4 potential function compiled in Table III.

In the following, we define a reduced rotational temperature T with T [K] = 1.44T B[cm−1]

and restrict it to 1 or 10 kB/B throughout the remainder of this article. For the lower reduced

temperature T = 1 we have Boltzmann factors 1× 0.32(A1g), 3× 0.16(T1u), and 2× 0.10(Eg)

in the three lowest levels, i.e., 100% of population is found in the lowest near-degenerate

set of states correlating to the librational ground state. For the higher reduced temperature

T = 10 similarly 0.12, 0.11, and 0.10 are found amounting to 65% of population in that

manifold.
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FIG. 2: (Color online) The energy spectrum En(κ) for the confined molecule in the octahedral

field. The symbols denote Oh irreducible representations as follows: A1g (circles), T1u (points), Eg

(squares), T2g (triangles), T2u (diamonds), A2u (asterisks), T1g (five-pointed stars), Eu (crosses),

and A2g (pluses). The dashed lines show the extrema of the potential. En and κ are in units of

B. Ground state rotational density for κ = 25 is inserted in the octahedron. (g and u parities are

distinguished with blue and red symbols, respectively)

In the following sections we demonstrate how the external fields affect the rotational

density distributions of ground librational states. To this end we choose this significant

strength κ = 25 for the crystal field, because we expect that the crystal-field splitting is

sufficiently large to survive random stresses in reality. These may arise from thermal motions

or other deviations from perfect symmetry. In contrast, the fragile tunneling structure among

the levels may get smeared out by already small distortions [28].

IV. LASER-INDUCED ALIGNMENT IN CRYSTAL FIELDS

When an intense, nonresonant alignment field is applied to molecules, here confined

by the crystal field, the interaction is given by Vα which is proportional to cos2 θ. The

dependence of energy levels En(∆ω; κ = 25) on ∆ω is shown in Fig. 3. We present the six

levels corresponding to the librational ground state and those upper states that contribute

to avoided crossings with these energy levels.

The upmost panel of Fig. 3 depicts the case that we call cooperative [29], where the
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external field is along a 〈100〉 direction. There, two of the density lobes already occupy

the target directions [states 1A1g (circles) and A2u (triangles)] defined by the field and

thus gain energy as the interaction strength ∆ω increases. The density becomes gradually

squeezed along the field. The other four states perpendicular to the field remain essentially

unaffected by the cos2 θ type interaction. In order to change the directional property of

these perpendicular states [2A1g (circles), 1, 2Eu (diamonds) and B1g (squares)] one has to

increase the field until higher states with the same symmetry come into avoided crossings.

Upon passing the avoided crossings at ∆ω = 25 and 45, the states change their characters

abruptly rather than narrowing smoothly as is observed for the parallel states. In order

to understand the directional properties of the rotational states subject to the nonresonant

alignment field, one has to consider the effective potential Vκ +Vα. The height Vb = −∆ω/2

of its barrier occurring at θ′ = π/4, φ′ = 0, π/2 between the target direction and the

perpendicular plane, see Fig. 1, is also drawn in the upper panel of Fig. 3.

In the competitive case with the field along a 〈111〉 direction, alignment is achieved by

turning the density onto the crystal-field maxima, see the middle panel of Fig. 3. All the

states [A1g (circles), A2u (triangles), Eu (squares), and Eg (diamonds)] exhibit similarly

some degree of alignment upon strengthening the interaction. No abrupt changes occur

and the avoided crossings around ∆ω ≈ 30 are barely visible. On the contrary, when the

field is along a 〈110〉 as in the lowest panel of the figure, two clear avoided crossings occur

at ∆ω = 25–30 (for 2A1g, circles) and ∆ω = 35–40 (for B2u, diamonds). These are the

perpendicular states, whereas the other four states [1A1g (circles), B1u (right-triangles), B3u

(down-triangles), and B2g (squares)] exhibit density maxima at θ = π/4 for ∆ω = 0 and,

hence, become more easily aligned.

Insertions in Fig. 3 depict the rotational densities at ∆ω = 60 for the energetically lowest

states A1g, except for D4h panel where the second root 2A1g is shown. In this case, the

density is plotted for the state beyond the avoided crossing, and it exhibits alignment which

is inherited from the higher state. We note that the field is applied vertical in all the panels.

As in the gas phase [19], the energies of the lowest states arrange to closely separated gerade–

ungerade pairs. For the ground state doublet Ψg, Ψu the expansion coefficients > 0.1 are

tabulated in Table IV. For comparison, the ground state for vanishing alignment field (∆ω =

0) is also shown. The effect of the alignment field is to introduce M = 0 character into a wave

function, i.e., to mix in components of the other states parallel to the field (θ = 0, π). This
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FIG. 3: (Color online) Reduced energy spectrum En(∆ω;κ = 25) of a confined molecule when

alignment field Vα is applied in three directions with respect to the crystal axes: 〈100〉 – potential

minimum, 〈111〉 – potential maximum, and 〈110〉 – saddle point. Common to all panels, the

totally symmetric A1g components are marked by circles, see text for others. Aligned densities are

inserted beyond avoided crossings (∆ω = 60) with field direction set vertical in the plots. Saddle

point energy Vb(∆ω) is shown by dashed line in D4h case. (blue – gerade states, red – ungerade

states)

happens either directly via the nonresonant field (inducing ∆J = ±2, ∆M = 0 transitions)

or via the field-induced avoided crossings of the energy levels. The former mechanism is

evident for the ground state doublets listed in Table IV, whereas the latter takes place in

the case of, e.g., 2A1g of D4h plotted in the upper panel of Fig. 3. There, the perpendicular

components, e.g., |4,±4〉, disappear from the state vector upon passing the avoided crossing

(∆ω = 35–55) and signs of |J, 0〉 components become constructive. Hence, the alignment
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TABLE IV: The |J,M〉 wave function components (with > 0.1 expansion coefficients) for the

ground state doublets Ψg,Ψu at κ = 25, ∆ω = 60. Ψ0 is the totally symmetric ground state at

κ = 25, ∆ω = 0. Abbreviation |J,M〉± ≡ |J,M〉 ± |J,−M〉.

D4h D3d D2h

Ψg 0.42|0, 0〉 −0.71|0, 0〉 −0.56|0, 0〉
0.71|2, 0〉 −0.67|2, 0〉 −0.71|2, 0〉
0.50|4, 0〉 −0.11|4, 3〉− −0.24|4, 0〉
0.24|6, 0〉 0.11|6, 0〉 0.19|4, 2〉+

0.11|6, 2〉+

Ψu 0.66|1, 0〉 0.93|1, 0〉 −0.81|1, 0〉
0.64|3, 0〉 0.27|3, 0〉 −0.47|3, 0〉
0.36|5, 0〉 −0.12|5, 0〉 0.16|3, 2〉+

0.14|7, 0〉 0.11|5, 3〉− 0.16|5, 2〉+

Ψ0 0.85|0, 0〉 0.85|0, 0〉 0.85|0, 0〉
0.40|4, 0〉 −0.27|4, 0〉 −0.10|4, 0〉
0.24|4, 4〉+ 0.32|4, 3〉− −0.32|4, 2〉+

0.18|4, 4〉+

effect is similar to adding a tetragonal distortion [28], Vα ∝ Y2,0, i.e., implying an elongation

of the cavity (along a 〈100〉 in D4h case) which favors the M = 0 states.

In order to give a more quantified view of the alignment, we use the expectation value

〈cos2 θ〉. This alignment cosine vanishes for a perpendicular state, is one-third for an isotropic

state, and approaches unity for the limit of infinitely narrow wave functions. Instead of

evaluating the expectation values explicitly, the values of the alignment cosine can also be

readily estimated from the slopes of the energy levels in Fig. 3 by the Hellmann–Feynman

theorem

〈cos2 θ〉n = − ∂En

∂∆ω
. (5)

The degree of alignment is shown in Fig. 4 (see also Fig. 5) for two thermal ensembles,

T = 1 kB/B (solid lines), and T = 10 kB/B (dashed lines). Moreover, the averaged val-
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FIG. 4: (Color online) The degree of alignment thermally averaged 〈〈cos2 θ〉〉 when the field (Vα)

is applied in three directions and in each for three crystal-field strengths κ = 0, 25, 60. Solid lines:

T = 1 kB/B, dashed lines: T = 10 kB/B.

ues 〈〈cos2 θ〉〉 are given for three crystal fields: strength κ = 0 (free molecule), κ = 25

(corresponding to the energies in Fig. 3), and κ = 60.

The upmost panel in Fig. 4 with field along one of 〈100〉 directions shows the cooperative

effect of the crystal and laser fields on alignment. High degree of alignment is achieved

with fields one order of magnitude weaker than in the gas phase (κ = 0) for the lower

temperature case. The enhancement is still significant for the higher temperature T =

10 kB/B. Comparing to the energy spectrum in Fig. 3, one sees that the average result is

insensitive to the dramatic changes of the components at avoided crossings (∆ω = 25 and

45). The overall alignment is obtained before coming to these crossings due to the assumed

thermally dictated population of the field-induced states. Upon inspecting the effective

14



superposition potential Vκ+Vα, we find that the field-insensitive states 2A1g, 1, 2Eu, and 1B1g

are no longer bound to the perpendicular plane for ∆ω & 14 as the potential barrier between

the θ = π/2 plane and the target θ = 0, π directions has been lowered by ≈ ∆ω/2. The

thermal activation for already smaller ∆ω is equivalent to an efficient 90-degree tunneling

in terms of the crystal field only. The two lower panels in Fig. 4 represent competitive,

hindered cases, and the maximal alignment remains below the gas phase values. Now the

alignment degree becomes lower in the stronger crystal fields. In the lowest panel, ∆ω ≥ 2κ

conditions favor the target direction over the crystal-field minima, whereas ∆ω ≥ 19κ/6

is needed to compensate the crystal in the 〈111〉 case (middle panel). In these conditions,

however, the angular well is broad and sharply aligned distributions cannot be achieved.

Figure 5 exemplifies further the cooperative effect for laser field polarized along a 〈100〉
discussed above. Here, the alignment is evaluated for the lowest state A1g and compared

to the thermal average at T = 1 kB/B. The dependence of alignment on the crystal-field

strength κ is given for five orders of magnitude in ∆ω. Within the range of crystal fields

studied (0 < κ < 100) near unity alignment is achieved even for low fields (∆ω & 0.1).

Most significantly, the enhancement with respect to the gas phase (κ = 0) is visible in

the case ∆ω = 1, which shows also the deviation of the lowest state result (solid line)

from the thermal average (dashed). The ground state alignment arises from formation of

a gerade–ungerade pair whereas the thermal alignment depends on the Boltzmann balance

between the parallel and perpendicular components of the lowest six states. For example,

at ∆ω = 10, the zero-field splitting, i.e., energetic separation of ground state doublet from

the higher, perpendicular states, remains as κ is increased, and the thermal average reflects

the population of the ground state (A1g, A2u) pair only. For ∆ω = 1 the perpendicular

components gain population upon increasing κ, i.e., upon creating the sixfold degenerate

librational ground state; however, small bias for the aligned doublet remains and the thermal

average for the alignment cosine can reach a value of 0.54. The weaker fields are not sufficient

to overcome Boltzmann averaging and the net alignment remains at the isotropic value.

As a summary of our investigation of alignment by nonresonant laser fields we declare that

weak fields are sufficient to align single states if κ is large enough and polarization direction

is favorable (cooperative case); however, strong fields are needed for a thermal ensemble

even at a rather low temperature and/or for unfavorable polarizations (competitive case).
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FIG. 5: (Color online) Alignment in the cooperative case with field along a 〈100〉: Lowest crystal-

field state (A1g, A2u pair) parallel to the field polarization. The thermal averages at T = 1 kB/B

are shown by dashed lines.

V. FIELD-INDUCED ORIENTATION IN CRYSTAL FIELDS

In the presence of an external electrostatic field, the interaction with the molecular dipole

moment gives rise to the cos θ type interaction Vµ. Hence, the degeneracies of the energy

levels of the librational states in the octahedral field are partially lifted according to the

reduced symmetry Cnv (n = 1, 2, 3) of the problem, see Table II. The field dependence of

the energy levels En(ω; κ = 25) is presented in Fig. 6 for three relative directions between

the crystallographic axes and the external field. In addition to states that either stay intact

(perpendicular) or gain energy (parallel, high-field seeking), there are now also states that

repel the field (antiparallel, low-field seeking states).

In the following, the nature of different states is exemplified in detail for the left column

of Fig. 6, where the static field points to the fourfold cube axis and the wave functions

are represented by C4v symmetry-adapted spherical harmonics. The lowest state 1A1(A1g)

becomes essentially parallel and gains energy due to hybridization of the librational crystal-

field states. The 2A1 and E states in C4v, which are all perpendicular to the field, correlate

with the triply degenerate second level T1u in Oh, see Table II. Thus the ”z-component”

(M = 0) character is transformed to other states. The B1(Eg) is also perpendicular, whereas

the 3A1(Eg) is the repulsive antiparallel state. Inspecting the leading expansion coefficients
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FIG. 6: (Color online) The energy spectrum En(ω;κ = 25) of a confined molecule when static field

Vµ is applied in three directions with respect to the crystal axes. Circular symbols are given to aid

resolving the avoided crossings between states with the same symmetry representation. (blue and

red distinguish the parent Oh state parities g and u, respectively)

TABLE V: Hybridization of librational states in static external field (ω = 10) showing schematically

the composition for the six lowest states of C4v symmetry in terms of Oh functions (ω = 0).

Cooperative case with the static field along a 〈100〉 crystallographic axis, see also the labelled

curves in the left panel of Fig. 6.

C4v Oh Orientation

1A1: A1g + T1u,z + Eg,2 Parallel

2A1: A1g − Eg,2 Perpendicular

3A1: A1g − T1u,z + Eg,2 Antiparallel

(1, 2)E: T1u,x ± T1u,y Perpendicular

B1: Eg,1 Perpendicular

at ω = 10 and projecting to ω = 0 (Oh), the coupling origins of the lowest six states can be

schematically described as given in Table V. The desired orientation parallel to the field is

thus obtained only for the lowest of these states. All the other energy levels are undergoing

true or avoided crossings as ω is increased. The emphasized curves (circles, points) in Fig. 6

show avoided crossings at ω ≈ 14 for the antiparallel 3A1 (180-degree turn-over) and ω ≈ 20
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for the perpendicular E (90-degree flip). The perpendicular states 2A1 and B1 gain only

slightly in energy due to the finite width of the density.

The middle panel in Fig. 6 shows the energy spectrum for static field pointing at the

threefold cube axis (C3v). Here, the objective is to orient the molecule towards the maximum

of the crystal field located ∆V = 19κ/9 above the minimum, see Fig. 1. There are three

states A1(A1g) and E(T1u) turning predominantly parallel and three states A1(T1u) and

E(Eg) becoming antiparallel as ω is increased. The antiparallel states turn over at the

avoided crossings around ω ≈ 14. Beyond this crossing, the rotational wave functions acquire

nodes at θ = 0, π and the orientation rather precesses around the target axis direction in

this range of ω, since the barrier of the crystal field Vκ to overcome is ∆V − EZP. In the

right panel, where orientation is aimed at the twofold axis (C2v) with potential barrier of

κ−EZP to overcome, there exist two states 1A1(A1g) and 1B1(T1u) that become parallel, two

perpendicular states B2(T1u) and 2A1(T1u), and two states 3A1(Eg) and 2B1(Eg) becoming

antiparallel. The former antiparallel state turns over at ω ≈ 11 and the latter at ω ≈ 15.

The dependence of the orientation cosine on the external field strength ω is shown in

Fig. 7. Similar results as for the alignment, see Fig. 4, are obtained for the thermally

averaged degree of orientation denoted as 〈〈cos θ〉〉. We find the cooperative effect for field

direction in 〈100〉 of the crystal with higher orientation for increasing crystal-field strength

κ. In contrast, the external field competes with the crystal field in the other two cases

leading to reduced orientation for increasing κ. In the left column of Fig. 7, where field

is applied in 〈100〉 direction, the three curves for κ = 5, 25, and 50 are above the gas

phase result, whereas in the other two panels the orientation cosines are below the gas

phase value for ω & 5. For the higher temperature the result is rather independent of

κ, as seen from the overlapping dashed lines. In all of these cases the thermal averages

show that a low temperature is necessary for attaining a significant effect. The highest

orientation of molecules is achieved when only the lowest parallel states are populated, e.g.,

for T = 1 kB/B. At the higher temperature, T = 10 kB/B, achieving high orientation is

hampered by population of perpendicular and antiparallel states.

Provided that specific states can be populated initially, also weak fields ω ≤ 1 can be very

effective in creating the orientation, as shown previously for the gas phase [18–23]. There

it is shown, that parallel and antiparallel combinations are formed from a gerade–ungerade

pair of states immediately for ω 6= 0, by means of tunneling. This pseudo-first-order effect is
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FIG. 7: (Color online) The degree of orientation thermally averaged 〈〈cos θ〉〉 when the field (Vµ)

is applied in three directions and for three crystal-field strengths κ = 5, 25, 50 as well as for the

gas phase (points). Solid lines: T = 1 kB/B, dashed lines: T = 10 kB/B.

also present for interactions of Vκ and Vµ in the crystal fields investigated here, see the first

and third rows in Table V. The dependence of tunneling splitting as a function of κ is shown

in upper panel of Fig. 8. The A1g–T1u and T1u–Eg energy splittings decrease exponentially

from 2B and 4B at κ = 0 to 3.9 × 10−4B and 1.9 × 10−4B at κ = 200, respectively. At

the same time, the crystal-field splitting increases to 54B. We present orientation cosines

with weak fields (low ω’s) in lower panel of Fig. 8 for the case of cooperative interactions,

i.e., for electrostatic field along a 〈100〉. Together with the increasing expectation value of

cos θ for the lowest state, A1 (solid lines), we present the opposite result for the antiparallel

component 3A1 by dashed lines. Increasing the strength of the crystal field reduces the

tunneling splitting (see also Fig. 2) and thus enhances the field-induced couplings within

the tunneling multiplet, as seen by the orientation cosines in Fig. 8. The parallel and

antiparallel states formed thereby can split strongly apart already for low ω, achieving near

unity orientation. For instance, the angular amplitude is narrowed to ±11◦ with ω = 1

and κ = 200 for either of the states. The orientation effect vanishes in thermal averaging

for ω < 1 as the field strengths are no longer sufficient to separate levels in energy and to

overcome the effect of Boltzmann statistics.

To conclude our investigation of orientation, we find similar results as for laser-induced

alignment: High orientation is reached for combined internal (crystal) and external static
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FIG. 8: (Color online) State specific orientation in the cooperative case (C4v): 〈cos θ〉(κ) for the

lowest, parallel A1 state (solid curves) with ω = 10–10−4 and for the antiparallel 3A1 state (dashed

curves) with ω = 1–10−4. The upper panel shows dependence of tunneling splittings ∆E between

the indicated lowest octahedral states on the crystal-field parameter κ. The crystal-field splitting

∆Ecf defined as E(1T2g)− E(1A1g) is also shown, see Fig. 2.

fields. While high fields are necessary if the effect of thermal averaging is included, very weak

fields are sufficient to reach that goal for the ground state only. In particular, these fields are

orders of magnitude smaller than needed for pendular orientation of gas phase molecules.

These findings can be regarded as the solid state analog (Vκ+Vµ interaction) for the enhanced

orientation in gas phase (Vα+Vµ). Differences, however, arise from the higher dimensionality.

While in the gas phase the orientation is achieved by essentially one-dimensional tunneling

between parallel and antiparallel directions, in the solid also perpendicular flips contribute.
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VI. SUMMARY

We have assessed within a simplified model the problem of controlling the directionality of

a linear molecule trapped in a cubic crystal. The rotational density distribution dictated by

the octahedral crystal field is manipulated by the interaction with a laser or an electrostatic

field to achieve alignment or orientation with respect to the polarization vector of the field,

respectively. The potential energy curvature restricting the molecular rotation is higher

in these solids than in the previously studied applications of the combined fields in gas

phase. Thereby the directional structure of the states is more complex and a wider range

of properties prevails. In particular, two reference frames for the molecule are present;

there is a competition between the crystallographic axes and the direction of the external

field. When the directions preferred by the fields coincide, we find cooperative effects for

both alignment and orientation. In this case, it is possible to exceed the degree of angular

confinement obtainable in gas phase. It is also shown that despite the competition between

the internal and external fields, rotational densities can be manipulated at will — also to

occupy directions maximally repelled by the crystal field, however, to a lower extent. This

selectivity opens up a possibility to study direction-dependent reaction dynamics in solids.

The efficiency of the alignment and orientation schemes presented is affected by thermal

conditions. The values of field strength parameters ∆ω and ω are limited from below to

accommodate a reasonable thermal population difference on the separated molecular states.

Hence, using very weak fields for pseudo-first-order Stark effect on orientation is sufficient

only in very favorable cases. Nevertheless, we find it comforting that the examined high ω

range can be realized in future applications to experimentally show this effect in rare gas

matrices. Furthermore, the question of selectively exciting individual field-induced states is

currently under investigation. For that purpose, we are extending the present studies by

taking the time dependence of the external fields explicitly into account. At the same time,

the dissipative response of the matrix is handled by allowing distortions and adding the

dependence on the translational and vibrational coordinates.

Experimental realization of the molecular alignment and orientation in solids depends

on interplay of the molecular parameters B, ∆α, and µ. Typical parameters can be found,

e.g., in Ref. [19]. Recently, we studied the ClF molecule (B = 0.5165 cm−1, ∆ω = 27 at

1 TW/cm2 field intensity, and ω = 3 at 100 kV/cm field strength) in Refs. [43, 44], where
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also the interaction with the matrix was estimated. Other work giving explicit values of

κ can be found from spectroscopy [32, 39, 51–53] and modelling [35, 49, 54] of librational

states. Experimental verification of the schemes as proposed in the present work poses

a significant challenge. In the gas phase, ionization and subsequent time-of-flight [4, 20–

23] or ion-imaging [55–58] measurements have been carried out to map the fragment atom

directions in a molecule after the control pulses. In a solid, the detection must preferentially

rely on optical responses only. For instance, the optical Kerr effect, which has been used

for nonintrusive probing of alignment of gas phase molecules [59–61], deserves attention.

First, before applying the control schemes, one must define the laboratory–crystal axes

system so that one knows which field polarization directions coincide with the maxima of

the rotational density. For macroscopic single crystals like doped alkali halides the symmetry

planes are evident. For rare gases the free-standing crystal samples are polycrystalline. To

reach the local symmetry, we can use a two-photon resonant excitation, thus selecting a

cos4 θ distributed subset of molecules, vary the polarization direction of the excitation field

with respect to the sample crystal, and detect a modulation in the emission intensity. A

micrometer-tight focusing is needed to sample a single grain and to prevent directional

averaging.

For the nonresonant alignment, we need also a tight focus of the laser pulse in creating

the high intensities. Here the destruction limits of the rare gas crystal pose a severe obstacle.

Probing the anisotropy created in the sample by alignment and/or static fields remains then

the ultimate goal and perhaps the most demanding stage of the experiment. In general we

aim at using three-pulse schemes, where the alignment pulse (or set of pulses) is followed

by a pump–probe excitation of electronic states and subsequent emission is detected as

the polarization dependent signal. Electronic excitations however complicate matters due

to coupling with the environment. The impulsive change to a degenerate Π state of the

molecule leads to nontotally symmetric changes of the local cage symmetry by the Jahn–

Teller effect, and the generated vibrational wave packet on the excited state potential further

interacts with the surrounding atoms possibly leading to a depolarization effects which must

be taken into account.

In an application stage we aim at the following: (i) We grow the crystal with a static

electric field ES switched on to create a biased sample of dopant dipoles trapped in the lattice

sites of the host. (ii) We apply the alignment field with polarization in an angle with respect
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to ES and detect the dynamics of a vibrational wave packet by pump–probe techniques and

investigate the possibility to control dissociation and recombination yields. (iii) We switch

the orientation field ES off and investigate transition times for phonon-assisted tunneling by

detecting a population rise perpendicular and a decay parallel to the switched bias field.
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