105 research outputs found

    Bound-free Spectra for Diatomic Molecules

    Get PDF
    It is now recognized that prediction of radiative heating of entering space craft requires explicit treatment of the radiation field from the infrared (IR) to the vacuum ultra violet (VUV). While at low temperatures and longer wavelengths, molecular radiation is well described by bound-bound transitions, in the short wavelength, high temperature regime, bound-free transitions can play an important role. In this work we describe first principles calculations we have carried out for bound-bound and bound-free transitions in N2, O2, C2, CO, CN, NO, and N2+. Compared to bound ]bound transitions, bound-free transitions have several particularities that make them different to deal with. These include more complicated line shapes and a dependence of emission intensity on both bound state diatomic and atomic concentrations. These will be discussed in detail below. The general procedure we used was the same for all species. The first step is to generate potential energy curves, transition moments, and coupling matrix elements by carrying out ab initio electronic structure calculations. These calculations are expensive, and thus approximations need to be made in order to make the calculations tractable. The only practical method we have to carry out these calculations is the internally contracted multi-reference configuration interaction (icMRCI) method as implemented in the program suite Molpro. This is a widely used method for these kinds of calculations, and is capable of generating very accurate results. With this method, we must first of choose which electrons to correlate, the one-electron basis to use, and then how to generate the molecular orbitals

    On the Computation of High Order Rys Quadrature Weights and Nodes

    Get PDF
    Since its introduction in 1976, the Rys Quadrature method has proven a very attractive method for evaluating electron repulsion integrals for calculations using Gaussian type orbitals. Since then, there have been considerable refinements of the method, but at it's core, Gaussian weights and nodes are used to exactly evaluate using a numerical approach to the transform integral. One of the powers of the Rys Quadrature method is the relative ease in evaluating integrals involving functions of high angular momentum. In this work we report on the complete resolution of these numerical difficulties, and we have easily computed accurate quadrature weights and nodes up to order 101. All calculations were carried out using 128-bit precision

    Calculations of rate constants for the three-body recombination of H2 in the presence of H2

    Get PDF
    A new global potential energy hypersurface for H2 + H2 is constructed and quasiclassical trajectory calculations performed using the resonance complex theory and energy transfer mechanism to estimate the rate of three body recombination over the temperature range 100 to 5000 K. The new potential is a faithful representation of ab initio electron structure calculations, is unchanged under the operation of exchanging H atoms, and reproduces the accurate H3 potential as one H atom is pulled away. Included in the fitting procedure are geometries expected to be important when one H2 is near or above the dissociation limit. The dynamics calculations explicitly include the motion of all four atoms and are performed efficiently using a vectorized variable-stepsize integrator. The predicted rate constants are approximately a factor of two smaller than experimental estimates over a broad temperature range

    The Low-Lying Electronic States of MgO

    Get PDF
    The low-lying singlet and triplet states of MgO have been studied using a SA-CASCF/ICMRCI approach using the aug-cc-pV5Z basis set. The spectroscopic constants (r(sub e), W(sub e), and T(sub e)) are in good agreement with the available experimental data. The computed lifetime for the B state is in excellent agreement with two of the three experimental results. The d state lifetime is in good agreement with experiment, while the computed D state lifetime is about twice as long as experiment

    Computing Highly Accurate Spectroscopic Line Lists for Characterization of Planetary Atmospheres: CO2 and SO2 Line Lists Needed for Modeling Venus

    Get PDF
    Over the last decade, it has become apparent that the most effective approach for determining highly accurate rotational and rovibrational line lists for molecules of interest in planetary atmospheres and other astrophysical environments is through a combination of highresolution laboratory experiments coupled with state-of-the art ab initio quantum chemistry methods. The approach involves computing the most accurate potential energy surface (PES) possible using state-of-the art electronic structure methods, followed by computing rotational and rovibrational energy levels using an exact variational method to solve the nuclear Schrdinger equation. Then, reliable experimental data from high-resolution experiments is used to refine the ab initio PES in order to improve the accuracy of the computed energy levels and transition energies. From the refinement step, we have been able to achieve an accuracy of approximately 0.015 cm-1 for rovibrational transition energies, and even better for purely rotational transitions. This combined "experiment / theory" approach allows for determination of essentially a complete line list, with hundreds of millions of transitions, and having the transition energies and intensities be highly accurate. Our group has successfully applied this approach to determine highly accurate line lists for NH3, CO2 and isotopologues, and SO2 and isotopologues. Here I will report our latest results for CO2 and SO2 including all isotopologues. Comparisons to the available data in HITRAN2012 and other available databases will be shown, though we note that our line lists for SO2 are significantly more complete than any other databases. Since it is important to span a large temperature range in order to model the spectral signature of Venus as well as exoplanets, we will demonstrate how the spectra change on going from low temperatures (100 K) to higher temperatures (500 K to 1500 K)

    The Effect of the Spin-Forbidden Co((sup 1) Sigma plus) plus O((sup 3) P) Yields CO2 (1 Sigma (sub G) plus) Recombination Reaction on Afterbody Heating of Mars Entry Vehicles

    Get PDF
    Vibrationally excited CO2, formed by two-body recombination from CO((sup 1) sigma plus) and O((sup 3) P) in the wake behind spacecraft entering the Martian atmosphere reaction, is potentially responsible for the higher than anticipated radiative heating of the backshell, compared to pre-flight predictions. This process involves a spin-forbidden transition of the transient triplet CO2 molecule to the longer-lived singlet. To accurately predict the singlet-triplet transition probability and estimate the thermal rate coefficient of the recombination reaction, ab initio methods were used to compute the first singlet and three lowest triplet CO2 potential energy surfaces and the spin-orbit coupling matrix elements between these states. Analytical fits to these four potential energy surfaces were generated for surface hopping trajectory calculations, using Tully's fewest switches surface hopping algorithm. Preliminary results for the trajectory calculations are presented. The calculated probability of a CO((sup 1) sigma plus) and O((sup 3) P) collision leading to singlet CO2 formation is on the order of 10 (sup -4). The predicted flowfield conditions for various Mars entry scenarios predict temperatures in the range of 1000 degrees Kelvin - 4000 degrees Kelvin and pressures in the range of 300-2500 pascals at the shoulder and in the wake, which is consistent with a heavy-particle collision frequency of 10 (sup 6) to 10 (sup 7) per second. Owing to this low collision frequency, it is likely that CO((sup 1) sigma plus) molecules formed by this mechanism will mostly be frozen in a highly nonequilibrium rovibrational energy state until they relax by photoemission

    Comparison of Quantum Mechanical and Empirical Potential Energy Surfaces and Computed Rate Coefficients for N2 Dissociation

    Get PDF
    Physics-based modeling of hypersonic flows is predicated on the availability of chemical reaction rate coefficients and cross sections for the collisional processes. This approach has been built around the use of quantum mechanical calculations to describe the interaction between the colliding particles. In this approach a potential energy surface (PES) is computed by solving the electronic Schrdinger equation and collision cross sections are determined for that PES using classical, semiclassical or quantum mechanical scattering methods. The rate coefficients are computed by integrating the thermally weighted cross sections. State-to-state rate coefficients are determined by only integrating over a thermal distribution of collisional energies. Finally, thermal rate coefficients are determined by summation of the state-to-state rate coefficients for reactions of molecules in all relevant ro-vibrational energy levels. If the flow is in thermal non-equilibrium, the translational, vibrational and rotational energy modes can be represented in different ways: three unique temperatures can be used to describe the distributions, the populations of individual ro-vibrational energy levels can be determined by solving the Master Equation, or through the use of direct simulation in particle-based Monte Carlo sampling. The PES-to-rate coefficient approach had been proposed and attempted in the early days of digital computing, but it is only in the last 15 years that computer hardware and software have been up to the task of calculating accurate interatomic and intermolecular potentials

    Comparison of Quantum Mechanical and Empirical Potential Energy Surfaces and Computed Rate Coefficients for N2 Dissociation

    Get PDF
    Comparisons are made between potential energy surfaces (PES) for N2 + N and N2 + N2 collisions and between rate coefficients for N2 dissociation that were computed using the quasiclassical trajectory method (QCT) on these PESs. For N2 + N we compare the Laganas empirical LEPS surface with one from NASA Ames Research Center based on ab initio quantum chemistry calculations. For N2 + N2 we compare two ab initio PESs (from NASA Ames and from the University of Minnesota). These use different methods for computing the ground state electronic energy for N4, but give similar results. Thermal N2 dissociation rate coefficients, for the 10,000K-30,000K temperature range, have been computed using each PES and the results are in excellent agreement. Quasi-stationary state (QSS) rate coefficients using both PESs have been computed at these temperatures using the Direct Molecular Simulation of Schwartentruber and coworkers. The QSS rate coefficients are up to a factor of 5 lower than the thermal ones and the thermal and QSS values bracket the results of shock-tube experiments. We conclude that the combination of ab initio quantum chemistry PESs and QCT calculations provides an attractive approach for the determination of accurate high-temperature rate coefficients for use in aerothermodynamics modeling

    Einstein A Coefficients and Oscillator Strengths for the A 2Π-X2Σ+ (Red) and B 2Σ+-X2Σ+ (Violet) Systems and Rovibrational Transitions in the X2Σ+ State of CN

    Get PDF
    Line strengths have been calculated in the form of Einstein A coefficients and f-values for a large number of bands of the A 2Π-X 2Σ+ and B 2Σ+-X 2Σ+ systems and rovibrational transitions within the X 2Σ+ state of CN using Western\u27s PGOPHER program. The J dependence of the transition dipole moment matrix elements (the Herman-Wallis effect) has been taken into account. Rydberg-Klein-Rees potential energy functions for the A 2Π, B 2Σ+ , and X 2Σ+ states were computed using spectroscopic constants from the A 2Π-X 2Σ+ and B 2Σ+-X 2Σ+ transitions. New electronic transition dipole moment functions for these systems and a dipole moment function for the X 2Σ+ state were generated from high level ab initio calculations and have been used in Le Roy\u27s LEVEL program to produce transition dipole moment matrix elements (including their J dependence) for a large number of vibrational bands. The program PGOPHER was used to calculate Einstein A coefficients, and a line list was generated containing the observed and calculated wavenumbers, Einstein A coefficients and f-values for 290 bands of the A 2Π-X 2Σ + transition with v′ = 0-22, v″ = 0-15, 250 bands of the B 2Σ+-X 2Σ+ transition with v′ = 0-15, v″ = 0-15 and 120 bands of the rovibrational transitions within the X 2Σ+ state with v = 0-15. The Einstein A coefficients have been used to compute radiative lifetimes of several vibrational levels of the A 2Π and B 2Σ + states and the values compared with those available from previous experimental and theoretical studies. © 2014. The American Astronomical Society
    • …
    corecore