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Since its introduction in 1976, the Rys Quadrature method has proven a very
attractive method for evaluating electron repulsion integrals for calculations using
Gaussian type orbitals. Since then, there have been considerable refinements of the
method,?3 but at it’s core, Gaussian weights and nodes are used to exactly evaluate
using a numerical approach the transform integral. One of the powers of the Rys
Quadrature method is the relative ease in evaluating integrals involving functions of
high angular momentum, and Seward? can handle up to i functions (# = &). This
requires Rys quadrature of order 2+ + 1 = 13, yet when we tried to compute
weights and nodes for higher order quadratures, we ran into numerical difficulties.
In this work we report on the complete resolution of these numerical difficulties,
and we have easily computed accurate quadrature weights and nodes up to order
101, thus now functions up to # = 50 can be handled, if desired. All calculations
were carried out using 128-bit precision.

King and Dupuis very nicely described the calculation of Rys quadrature weights
and nodes,* and we initially followed many of their procedures. However we used
more sophisticated algorithms for computing the weights and nodes. In our first
attempt, we computed the moments
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Eq1l

for the fixed parameter X in terms of the incomplete gamma function via the
algorithm given by Press et al.> and then used them with the algorithm of Wheeler,®
an efficient reformulation of the Sack and Donovan’ method, to compute the weights
and nodes. In order to compute a ¥ point quadrature, the moments for

it = 0,1,....2% — 1 are required. However, even though we used 128-bit precision,
we had difficulties in obtaining all positive nodes for the higher order quadratures.

In our second attempt, we computed the modified moments
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Eq 2

where i1 is an orthogonal polynomial. Note that now the integration interval has
changed to be symmetric about the origin — this means that all odd iz lead to zero
modified moments, so for a & point quadrature, the moments for iv = 0,1, ...,4¥ are
required. In the limit X — 1}, the Rys polynomials become Legendre polynomials, and
so for “small” X we used a=L, i.e, the t§ are Legendre polynomials. In the limit

X — o2, the Rys polynomials are proportional to Hermite polynomials of argument
t/+X, and so for “large” X we used a=H, i.e, the it are Hermite polynomials of

argument E/VE. By means of these choices, rather than increasing in magnitude as n
increases, the modified moments rapidly decrease as n increases. But the trade off is
the modified moments must be evaluated numerically. Initially we tried Romberg
integration,> whereby the integral was evaluated by the trapezoidal rule for step

h
sizes J"tE % .« and then extrapolated to zero step size. This eliminated the non-
positive node problem seen in the first attempt, and we moved onto the next stage

of the development, namely the interpolation of the weights and nodes with respect

to XK.

We follow King and Dupuis* and interpolate using a Chebyshev expansion of the
dependence of the weights and nodes on X. This turned out to be a critical factor in
obtaining accurate high order weights and nodes. This is because the Chebyshev
expansion coefficients are a very good indicator of numerical noise in the
calculations, and we found that although our weights and nodes looked reasonable
for individual ., they clearly showed unacceptable noise levels when looked at as a
function of X. This lead to our next level of refinement. We experimented with
several ways of carrying out the Chebyshev expansion and ended up dividing . into
evenly space intervals of width unity.

In order to reduce the numerical noise, we tried increasing the accuracy of the
computation of the modified moments, but found that the Romberg integration
simply could not provide the required accuracy. The first step in improving the
process was to switch from the trapezoidal rule to repeated 10 point Gauss-
Legendre quadrature. We evaluated the integrals by dividing the range into

1,2,3.5, ... equal segments, integrating each segment by the 10 point quadrature rule,
then stopped when two successive number of segments gave the same results to
within an input error tolerance, typically 10~*. This turned out to be much more
efficient than the Romberg integration, but still was not able to deliver the required
accuracy. The solution to this problem was to look at the integrand: the reason the
desired accuracy was hard to obtain was that the integrand was highly oscillatory
and thus there was significant cancellation between various regions. Thus, we then
determined the nodes in the integrand and split up the integration range so that
each range started and ended on a node, and included a node between the starting
and ending range, if possible. This procedure worked very well. We determined the



nodes via bisection,> with the bisection search stopping when the node was
determined to nearly machine precision (10-41).

By means of this procedure, we could generate accurate weights and nodes for
quadrature’s up to & = 13 before unacceptable numerical noise again crept into the
calculations. This time we attribute the problem to the fact that the modified
moments for high order become so small that numerically they were similar to the
odd modified moments that are all identically zero.

This then led to the final procedure. If one reads the discussion of algorithms in Ref.
5, a primary driver is numerical efficiency, with numerical stability being an
important, but secondary concern. In the present application, numerical efficiency is
not an important concern, since the quadrature weights will be computed only once.
Thus, we will proceed as follows: we will directly determine the coefficients &, and
B, in the recursion relation
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Eq 3
by requiring
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Eq 4
foritt = n and it — 1 subject to the boundary conditions .. = ) and &, = 1, where

we imply the dependence of i1, and #., on X. This is the procedure of Stieltjes,*> and
requires the evaluation of the integrals (R, t%#,_,}, (R, 12,0, (R, 08 ), and
tHa-18,:-1). These are evaluated using the repeated 10 point quadrature described
above. Once the recursion coefficients are determined, we determine the nodes by
root finding, using the intervals from the roots of the previous order polynomials as
initial guesses to a several step bisection search followed by Newton-Raphson
refinement. Since the functions are evaluated by recursion, the derivative required
for the Newton-Raphson procedure is easily computed and thus we have all the
required information for evaluating the quadrature weights via®
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Eq5
where t; is one of the roots of .

This method requires about 3/ integrals for a ¥ point quadrature, whereas the
previous algorithm requires about 24 integrals, so is clearly less efficient, but it
gives very good results, for the recursion coefficients are given as a simple ratio of
integrals: @t,, = (M, 40, 1 (0.0 and by = (Rt a0/ (Rp— R, -1 ). We have used



this method up to &% = 101 with absolutely no sign of numerical noise at the 107!
level.

[t is instructive to compare the present method with that used by King and Dupuis.*
The principle difference is they based their calculations on the moments of Eq 1, and
used Schmidt orthogonalization to determine the Rys polynomials. Our procedure,
in contrast, explicitly evaluated the integrals (R, t%#,_;}, (R,t%i, ), and (R, Mt ) at
each step once #,, had been determined. This is exactly the difference between the
Gram-Schmidt orthogonalization and Modified Gram-Schmidt orthogonalization,?
and is the reason Modified Graham-Schmidt orthogonalization has such superior
numerical stability compared to the original version.

We now address the issue of evaluating the quadrature weights and nodes in the
large X limit. As mentioned previously, as £ — =2, the Rys polynomials become
scaled Hermite polynomials, thus the Rys quadrature weights and nodes can be
computed from Gauss-Hermite quadrature weights and nodes. King and Dupuis*
examined this transition carefully, and came up with a fitting procedure which
enabled them to interpolate between the asymptotic limit and the X values used in
the Chebyshev expansion. We have found that this smooth transition was present
for low weights and nodes, w; and ¢; for i <= &, but not for high weights and nodes,
vy and ¢; for i = N. Thus for simplicity, we carried out the Chebyshev expansion
until the asymptotic region where the Rys quadrature weights and nodes can be
computed accurately from Gauss-Hermite quadrature weights and nodes. Compared
to the algorithm of King and Dupuis,* our method requires more memory, but this is
not an issue for modern computers.

We have every expectation that the developments reported herein will enable some
very exciting new calculations in molecular electronic structure theory.
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