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Calculations of rate constants for the three-body 
recombination of HZ in the presence of Hz 

David W. Schwenke' 
Eloret Institute, Palo Alto, CA 94303 

Abstract: 

We construct a new global potential energy hypersurface for Hz + Hz and 
perform quasiclassical trajectory calculations using the resonance complex theory 
and energy transfer mechanism to estimate the rate of three body recombination 
over the temperature range 100 - 5000 K .  The new potential is a faithful rep- 
resentation of ab initio electronic structure calculations, is unchanged under the 
operation of exchanging H atoms, and reproduces the accurate H3 potential as one 
H atom is pulled away. Included in the fitting procedure are geometries expected 
to be important when one Hz is near or above the dissociation limit. The dynamics 
calculations explicitly include the motion of all four atoms and are performed effi- 
ciently using a vectorized variable-stepsize integrator. The predicted rate constants 
are approximately a factor of two smaller than experimental estimates over a broad 
temperature range. 

* Mailing address: NASA Ames Research Center, Moffett Field, CA, 94035 
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I. Introduction 

We have begun a detailed study of the calculation of recombination rate con- 

stants for hydrogen containing compounds in the gas phase. This is motivated by 
the need for these rate constants as input into modeling studies of hydrogen com- 

bustion processes. These processes in turn are important for the elucidation and 

design of a wide variety of hydrogen containing systems. 

e 

The initial system being considered is the recombination of hydrogen atoms 

to form H2 in the presence of excess thermal Hz. This system has the advantage 
that it is one of the simplest possible and also there exist several experimental 

measurements which can be used to monitor the reliability of the theoretical pre- 

dictions. The available experimental studies have been reviewed [l] and values for 

the recombination rate constants have been recommended over the temperature 

range 50-5000 K .  The availability of experimental data will be important because 

the theoretical models used are not completely developed and the ultimate goal is 

to reliably predict rates for other systems or under conditions where experimental 

results are not available. 

. 

There have been several previous theoretical studies of gas phase recombination 

processes and different models and methods have been developedI2-61. The particu- 

lar model used in the present study was formulated by Roberts et  a1.[4] whereby the 

recombination rate is calculated from the rate of stabilization of quasibound reso- 

nant states by collisions with a third body. Of the available models, this resonance 

complex theory is the only one which takes into account the quantum mechanical 
nature of the metastable states involved in the recombination process. This model 

has been utilized in conjunction with the quasiclassical trajectory method to calcu- 

late recombination rates for hydrogen using several third bodies( H ,  H z ,  H e ,  and 

Ar in Ref.171 and H in Ref.181). The present study closely follows this previous work 

but also includes several extensions and improvements. 

The computational steps involved in the resonance complex theory are twofold. 

First of all, it is necessary to identify and characterize the important resonant states 

and secondly the rates of stabilization of these resonant states must be determined. 

For the present work we consider only the energy transfer mechanism in which 

case the resonant states are the metastable states of Ha. Previous workers have 
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well characterized these metastable states[%ll], thus in the present report we are 

concerned with the four body problem of collisions of thermal Hz with metastable 

I @ H2. 
The previous calculations for H2 as a third body [7] made several approxima- 

tions. Probably the most severe limitation was the use of empirical potential energy 

functions. Another possible source of error was the assumption that the thermal 

H2 could be treated as a structureless particle. In the present work we eliminate 

these criticisms by constructing a new potential energy function which is based on 

ab initio electronic structure calculations and accurately treat the full four body 

dynamics. In addition, we use more accurate metastable state information and 

extend the results to higher temperatures. 

The new potential is described and discussed in Sect. 11, the dynamical meth- 

ods are described in Sect. 111, and our results are presented and discussed in Sect. 

IV. Finally in Sect. V we present the conclusions of this study. 

All our calculations are carried out using hartree atomic units where the unit 

of energy is denoted Eh and 1 Eh = 219474.7 cm-' = 627.5095 kcal/mol = 4.3598 

xlO-'*J, the unit of length is the bohr and is denoted a, and 1 a, = 0.5291771 
X ~ O - ' ~  m, the mass unit is the electron mass which is denoted me and 1 me = 

5.485804 x 
11. Potentials 

a.m.u., and the time unit is equal to 2.418884 xlO-" seconds. 

First consider the Hz potential. The quasibound states of H2 were studied 

for several potentials in Ref. [ll] and because of the variation of the results seen 

there, it is desirable to employ the most accurate potential curve possible. The 
most accurate resonance parameters determined in Ref. 111) used a potential which 
included estimates of nonadiabatic effects. However this potential is not suitable for 

classical dynamics because it can not be represented as a single potential curve, thus 

instead we use the potential which includes all corrections except the nonadiabatic 

correction. The potential we will use is a representation of the one called Ad in Ref. 

(111. This potential is based on the most accurate Born-Oppenheimer potential aug- 

mented by relativistic, radiative and nuclear motion corrections. The representation 
of the Ad potential used in Ref. (111 was a combination of a piecewise fifth order 

polynomial fit to the Born-Oppenheimer potential and its first derivative and cubic 

r -  
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spline representations of the various corrections to the Born-Oppenheimer potential. 

In addition, extrapolations using various functional forms for small and large bond 

length are involved when evaluating that potential. For the present calculations, it 

is desirable that the potential be represented in a form which avoids decisions in 

order to take full advantage of the vector processing capabilities available on class 
VI supercomputers. Thus we search for an alternate analytic representation. 

e 

We begin by writing the new ground state H2 potential V" in the form 

where r is the bond length, V S R  is a short ranged contribution and V L R  is the long 

range form of the potential, which is represented as 

We take the dispersion parameters Cg,  C8, and clo from previous ca~cu~ations[l2,13] 

and treat ro as an adjustable parameter. After some experimentation, we chose to 

represent vSR as a vSR = ~ { e z p [ - a ( r ) ]  - 112 - D, (3) 

i.e. a Morse curve with a r dependent range parameter. Taking cognizance of the 

singularity at r = 0, we write 

N 
a! = y- a12. 

U (4) 
i = O  

The fitting procedure consists of first guessing values for 70, s and N ,  then using Eqs. 

(1) and (2) to determine V S R .  The parameter D is then fixed by approximating Q 

by a(r  - r l )  and determining D, a and r1 so that VSR is reproduced at the three 

values of r closest to the equilibrium separation of Hz.  Once D is known, Eq. (3) 

can be inverted to give a! at the input data points. The remaining parameters are 

then determined by linear least squares. This procedure is repeated as-a function 

of 1-0 in order to minimize the rms error produced in the fit to a. The data used in 
the fit are the values of the Ad potential from Ref. [ll] evaluated at the distances 

where the Born-Oppenheimer potential was calculated[ 141. 
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An important problem for least -squares fitting procedures is the method of 

weighting the various data points. For example, in the above procedure, an equally 
weighted least squares fit would tend to fit most accurately the values of CY for large 

and small r since the magnitude of a is largest for these extremes. However, it is 
probably desirable to fit a most accurately for intermediate r ,  since that is where 

the wavefunction is likely to be largest. We accomplish this goal by using a weight 

function which is peaked in the vicinity of the equilibriumseparation. The particular 

function used is the square of the ground state Morse oscillator wavefunction for the 

Morse parameters D, a, and rl  determined above. In addition to these parameters 

a mass is required in the weight function - this parameter determines the width of 

the weight function. Empirically a value of 10 me was determined to be suitable. 

e 

In Fig. 1 the curves a and r8a for s=l are given. Both curves are very smooth 

and appear to  be much easier to fit than the potential itself. The curve for r a  looks 

approximately quadratic and so it might be expected that a low order fit would 

probably be quite adequate. However, because the potential for H2 is known very 
accurately, it is necessary to use a high value of N to obtain satisfactory results. 

The final fit is obtained using s=l and N=16 in Eq. (4). It should be noted that an 

important reason for the approximate linearity of CY for large r is the separation of 

the long range and short range form of the potential. It would be interesting to see 

if these techniques would be useful for representing the potential of other diatomics. 

An important problem when using high order polynomials is to make sure 

that they do not do strange things for bond lengths not included in the fit. This 
caused many trial fits to be rejected. The current fit to T Q  has only one zero for 

r real and r 2 0 (the zero is near the equilibrium separation) and also d [ r a ] / d r  
has only one zero for f real and r 2 0. The overall rms error of the fit is 2.78 

mEh, however the error decreases rapidly as r increases and the rms error for all 

points with r 2 l a ,  is only 0.52pEh. We have also computed the energy levels 
of all bound and quasibound states of H2 using the WKB method for the current 

analytic representation and the original Ad potential and they agree very well. The 

rms difference is only 0.16 cm-' while the maximum difference is only 0.30 cm-'. 

Thus the current analytic representation satisfies our computational demands of no 

decisions for its evaluation without sacrificing accuracy. The parameters for this 

r -  
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representation are given in Table I. It should be noted that because the potential 

includes corrections to the Born-Oppenheimer potential which are mass dependent, 

it is only valid for the isotope of H with mass 1 a.m.u. 
e 

We now turn to the full H4 potential. There have been several potentials 

proposed for the H4 system, however few are applicable when one or more hydrogens 

are not at  their equilibrium displacement and of these, fewer still are of documented 

accuracy when a hydrogen is stretched far from equilibrium. However, it is just these 

geometries which are expected to be important for the present application. Thus we 
will construct a new potential which concentrates on this aspect. The data we use to 

produce the new potential is the result of ab initio electronic structure calculations. 

There have been a large number of studies of the electronic structure of H4, again 
mostly for hydrogen at  its equilibrium separation. Because the classical equations 

of motion use as input only the gradient of the potential and not the potential 

itself, it will be important to accurately know the dependent of the potential on 

all degrees of freedom including bound length. Thus we perform new ab initio 
electronic structure calculations with these requirements in mind. 

The electronic structure calculations where carried out using the MOLECULE- 
SWEDEN[15] codes with a gaussian basis set. The basis set consisted of 8 S func- 

tions contracted to 4 functions, 2 p functions and 1 d function per atom. The s 

function exponential parameters where taken from Ref. [ 161 and the contraction 
coefficients where determined from a calculation on the hydrogen atom. The p and 

d function exponential parameters where taken from Ref. [17]. The s components 
of the d functions were not included in the calculation giving a grand total of 60 

contracted basis functions. With this atomic orbital basis, molecular orbitals where 
determined by performing a CASSCF calculation which included 4 orbitals in the 

active space. The energy produced by this calculation is denoted ECAS. Using this 

molecular orbit a1 basis, a mult irefer ence configuration interact ion calculation was 
carried out including all single and double excitations out of the possible CAS ref- 

erence configurations. The energy produced by this calculation is denoted EMRC'. 
All calculations include all four H atoms to minimize problems of size -consistency. 
With this basis set and correlation treatment, the difference in EMRC* between 

two H2 molecules with bond length 1.401 a, separated by 20 a, and four H atoms 

0 

c-. 
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no closer than 20 a, to each other is -0.345698 E h ,  which is 99.1 % of twice the 

accurate value of the Born-Oppenheimer De.  
Calculations were carried out for a total of 92 different geometries, all using 

CzV symmetry, and the results are given in Tables 11-VI. The number of geometries 

may seem low, but due to the high symmetry of this system and the method used 
to represent the potential energy hypersurface, these points should be sufficient for 

our purposes. 

The ab initio electronic structure calculations we have carried out are expected 

to be accurate except in the vicinity of the Van der Waals minimum where much 

larger basis sets and more accurate correlation treatments are required[18]. This 

should not be a problem for two reasons. First of all it is possible to represent the 
potential in the vicinity of the Van der Waals minimum by using data describing the 

asymptotic form of the interaction potential, and secondly, the energies sampled by 

our dynamics calculations will be larger than the Van der Waals well depth, thus 

small to moderate errors there should not have a large effect on the calculated rate 

constants. 

To represent the long range potential not given accurately by our electronic 

structure calculations, we will include a function in our analytic representation 
which has the proper asymptotic form. Most of the parameters of this function are 

determined not by the present electronic structure calculations but rather by other, 

more accurate, calculations. In particular the long range potential is represented as 

v,L,R,,, = c zl:l;2p(r1 9 r2 9 RIP,, q 2 p ( 8 1 ,  8 2  9 4) 9 ( 5 )  
q19211 

where AB + CD denotes a particular way of drawing the bonds between four indis- 

tinguishable hydrogen atoms, 71, r2,  R, 81, 8 2 ,  41, and 4 2  are the jacobi coordinates 
for AB + CD, and 4 = $1 - $2. The jacobi coordinates are defined so that ri is the 

length of the vector < connecting the atoms in molecule i, R is the length of the 

vector R' connecting the centers of mass of the two molecules, cos8i = - R/Rri, 
and cos4 = (F1 x I?) - (F2 x $)/IT1 x 2117; x 21. The angular functions are given 

+ 

c -  

by 1191 
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where Yq,, is a spherical harmonic. Because of homonuclear symmetry, only even 

values of the indicies q1, and 42 appear in Eq. (5). In Eq.(5), we will only include 

the terms with q1 + 42 5 2.  The terms with q1 + 42 < 2 include dispersion and 

induction contributions and the terms with q1+ 42 = 2 also include the quadrapole- 

quadrapole interaction. We will include the dominant contributions for these terms 
and write 

0 

where CgP1q2p and Cilq2,, are dispersion coefficients, d L R  is a damping function, Q 

is the quadrapole moment, and 

3/10, p = 0; 

&/2Q, p = 2. 
d 5 / 5 ,  p =  1; Q Q l Q 2 P  = 

Everything except the damping function is obtainable from calculations by other 

workers. The damping function is determined by smoothly blending with 

the rest of the potential to approximately reproduce the Van der Waals minimum. 0 
In particular we use 

d L R  = d L R e x p ( - d i R R ) .  1 (9) 

For fitting purposes it is convenient to independently vary the quantities d k R  and 

dLR(R = 6.5 a, )  rather than d i R  and d f R .  Then the parameter d i R  primarily 
controls the size of the long range potential for geometries which are mostly repulsive 

and d L R ( R  = 6.5 a,) controls the depth of the Van der Waals well. 

The dependence of the quadrapole moment on bond length is parameterized 

= 0.4 to 4a,. by fitting the calculated values of Q from Ref. [20] over the range 
We choose to represent it as 

with the parameters determined by equally weighted least squares. The parameters 

are given in Table VII. The rms error for this fit is 4 . 2 ~ 1 0 - ~ a . u .  
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The dependence of the dispersion parameters on bond length is not as well 

known, so it is necessary to resort to a more approximate procedure to parameterize 

this dependence. We do this by combining the values of the parameters for rl = 

rz = 1 . 4 4 9 ~ ~  quoted in Ref. [21] along with the dispersion coefficients for H e  + H2 
from Ref. [18], which are given for three bond lengths. In particular, we write 

0 I 
I 

where Cx is the dispersion coefficient for H e  + Hz multiplying the Legendre poly- 

nomial of order q, and e , (He)  is an effective dispersion coefficient for H e  + H e  
interactions, chosen so that equality holds in Eq. (11) when r1 = r2 = 1 . 4 4 9 ~ ~ .  

The square root factor in Eq. (11) arises because of the normalization factors of 

the spherical harmonics in the angular function yqlqzP not present in an Legendre 

polynomial expansion. The bond length dependence of the Cz is parameterized by 
writing 

C: = rmz(u: + 6 : r ) e z p [ - ( d ~ r ) ~ ] ,  (12) 

i.e. we assume that the r dependence of Cz is similar to that of the quadrapole 

moment. The parameters for this equation are determined by equally weighted least 

squares. In Table VI1 we give the parameters for the functions ex which are the 
Cx rescaled so that the equation 

0 

is satisfied. 

Equation (11) is an approximation, and it is interesting to estimate its accuracy 
by comparing the e n ( H e )  to accurate values. For the case n = 6, we obtain values of 

e B ( H e )  which range from 1.24 to 1.33 u.u., while the accurate value is 1.47k0.1 U.U. 

[22], and for n = 8, 14.9 to 16.8 u.u., as compared to 14.0f0.2 U.U. (221 Thus we 

see that Eq. (11) holds to about 20 %, which should be accurate enough for the 
present calculations. 

We now turn to the representation of the repulsive part of the potential. One 
of the difficulties of producing an analytic representation for all atoms near together 

is the high symmetry in the H4 system. This is especially true if the representation 

9 
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needs to behave properly when H atoms are exchanged. When both molecules are 

near their equilibrium separation, it is convenient to  expand the potential in terms 
of the jacobi coordinates t l ,  t2 ,  R ,  81, 02 ,  and 4, as was done for the long range 

potential. However when R and the t; become similar in size, it is not always 

clear how to drawn in the bonds, i.e. it may be ambiguous whether the system 
is best described by AB + C D ,  AC + B D  or AD + B C ,  where A-D are formally 

distinguishable H atoms. Thus a given set of jacobi coordinates are not suitable for 

a global representation of the potential. In the present situation we will handle this 
problem by first determining a representation for small vibrational displacements 

where the identity of the bonding and nonbonding pairs is clear, then switch to a 

more suitable representation for other configurations. 

0 

We begin our representation by extending the techniques of Ref. 1231. We first 

define the interaction potential to be the difference in energy between a geometry 

having particular values of r l ,  7 2 ,  R, 81, 192, 4 and a geometry with the same values 

of 71 and r2 but with R = 20 a,. The total potential is the sum of the interaction 

potential and the bonding pair potentials, V". The interaction potentials from 

the electronic structure calculations use EMRCz and are denoted V M R C x .  
The first ingredient in the analytic representation is a nonbonding pairwise 

potential called Vp.  This potential is determined by considering the interaction 

potential of the geometries having 81 = 8 2  = r$ = 7r/2. This is called the crossed 

geometry and its energies are given in Table VI. For these geometries, when both 

molecules have the same bond length, all of the nonbonding pairs are separated 
by equal distances, thus the nonbonding pairwise potential can be defined as one 
quarter of the interaction potential. To make this determination unique, only the 

eight geometries in Table VI having bond lengths equal to 1.401 a, are used. This 

determines V p  only for eight distances, and we extrapolate and interpolate Vp by 

fitting it to the functional form 

0 

V p  = A p e z p ( - B p z C P ) ,  (14) 
c -  

with A p ,  B p ,  and C p  parameters. This fit is performed using nonlinear least 
squares with each point weighted by the amount (IVMRCz/4( + 10rnEh)-', where 

V M R C z  is the interaction potential calculated from Table VI for that distance. Thus 
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the approximate relative error is minimized. The fit is quite good, giving as the 
minimized error 3 . 7 ~  and an absolute rms error of 10 p E h .  The parameters for 

this fit are given in Table VII. It should be noted that Vp is positive everywhere. In 
0 

Ref, [23], the nonbonding pairwise potential was generated at arbitrary distances by 

cubic spline interpolation, however we use Eq. (14) instead because of the smaller 

number of input data points and for the vectorization considerations mentioned 

above. 

The nonbonding pairwise potential provides a reasonable zeroth order repre- 

sentation of the interaction potential, but it is not sufficiently accurate, so we make 

corrections to it. For small vibrational displacements, we write 

-+ VALBR+C~(rl,r2rRIB1,82,~) 

(15) 
where Vpi$D is the interaction potential for AB and CD close to their equilibrium 

displacements, Rij is the distance between atom i and atom j ,  FC is a multiplicative 

correction function, and is the long range potential defined above. In Ref. 

[23], a small factor was included to shift the potentials to ensure that FG was always 

positive and always multiplied a positive function, however that is not required here 

because in the present case the long range attractive part of the potential is treated 

separately so that V p  and the differences between interaction potentials and the 

long range potentials included in the fitting procedure are automatically positive. 

We now expand the function F' as 

where the coefficients fQc,q21r are to be determined and the angular functions are 

given by Eq. (6) above. To determine the fQClq2,,, we use the difference between the 
interaction potential and the long range potential for r; = 1.0 or 1.401a0, R = 3.0, 

3.5, 4.0, 4.5, or 5.0 a,, and [d l ,B, ,4 ]  = [O,O,O] (linear), [7r/2,0,0] (T shaped), 

[0,7r/2,0] (T shaped), [7r/2,7r/2,0] (parallel) or [7r/2,7r/2,7r/2] (crossed), a total of 
100 energies. This plus Eq. (15) gives F". The terms (q1,q2,p)=(0,0,0), (2,0,0), 
(0,2,0), (2,2,0), and (2,2,2) are used in Eq. (16), and this equation is inverted to 

I -. 
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give the f:192p. The term ( q 1 ,  gz, p)=(2,2,1) is not included in the fitting procedure 

because it is zero for all the geometries for which we have calculated ub initio data. 

To generate the coefficients f Q C l q z p  for arbitrary values of t; and R ,  they are fit by 

linear least squares to the form 

All points are equally weighted in this fit and typically rms errors of about 0.3 rnEh 
are obtained. The final parameters ~ g t ~ ~  are given in Table VIII. 

It should be noted that the restriction of the angular functions in Eq. (16) 
to  q1 + qz 5 2 does not imply a similar restriction on the potential Vp$& - the 

presence of the pairwise potential Vp ensures that higher order anisotropies exist. 

. The analytic representation of Eq. (15) works quite well when the bond lengths 

are not too large, but becomes less accurate for large displacements from equilib- 

rium. For a typical example, see Fig. (2). We now define a large vibrational 

displacement potential which is more accurate for large bond lengths. A potential 

valid for both small and large displacements is obtained by smoothly switching from 

0 one to the other. 

A subset of geometries where one bond length is very large is the situation 
where the system is most naturally described as H3 + H ,  thus the large vibrational 

displacement potential will be forced to satisfy this limit. In particular, when one 

H is pulled away, the large vibrational displacement potential will reproduce a 
modification of the accurate LSTH N3 potential(241. The LSTH total potential is 

written in the form 

where Vr4,"" is obtained from the london equation: 

1 2 112 
3 

Vki" = Pi - (5 C[Ji - J j ]  } 
i= 1 i > j  

where 

Qi = -[ 'E(&) 1 -t3 E(&)] ,  2 
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(21) 
1 

Ji = i [ ' E ( R i )  -3 E ( & ) ] ,  

Ri is one of the three interpair distances, 'E is the H2 singlet potential, 3E is an 
effective H2 triplet potential, and V"H N S B  is a correction function for nonsymmetric 

and bent geometries. Both VE4,"" and V"H N S B  are symmetric with respect to the 

interchange of any two H atoms. The simplest way to extend V L S T H  to H4 is to 

write 

N S B = v N S B  N S B  N S B  N S B  
vH4 ABC + V A B D  + VACD + VBCD 9 (23) 

In practice, this is modified in three ways. First of all, we replace the singlet function 

'E of Eqs. (20) and (21) with the H2 potential V". Secondly we slightly modify 

the effective triplet potential 3E so that it is always greater than V" by writing 

3J!3 =3 s(R)Vi,M(R) + 3  E @ ) ,  (25) 

where 

3s = e ~ p i - ~ c r ~ ~ ] ,  

and 

V t f  = D { e s p [ - a ( R ) ]  + 1 } 2  - D + VLR(R) ,  (27) 

D, a ,  and VLR defined at the beginning of this section. The parameter 3a is 

given in Table VI1 and is determined to approximately minimize the effect of this 

change while ensuring the inequality > V". These two changes do not signifi- 

cantly alter the LSTH potential for geometries probed by most collisions. The final 

modification is to scale V",SB in Eq. (24) by a factor which goes to unity as the 

r -  
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- 
configuration goes to H3 + H. Thus the large vibration displacement total potential 

is 
N S B  vLD = vi:" + S(P)VH, , 

where pit" is given by Eq. (22) with the replacements VHH and 'k for 'E and 

3E in Eqs. (20) and (21), and the scaling function is given by 

where 
6 

t=  1 

The quantities P and po are parameters. The V L D  potential is symmetric with 
respect to the interchange of any two H atoms. The motivation of including the 

factor S can be seen in Fig. (2) where the interaction potentials derived from F&'., 
VH, 9 and V L D  are shown. In comparison to the ab initio data, the ck:" potential 

is much too small and the VH, potential is much too large. 

The small and large vibrational displacement potentials are now combined by 

defining the quantity 

where the switch sD is given by 

where uD and r D  are parameters. 

The final linear parameters in Eq. (17) are determined by approximately op- 

timizing the nonlinear parameters p, p,, uD, d k R ,  and dLR(R = 6.5 u,). The 
parameter r D  is fixed at a value of 5.4 a,, which causes sD to equal 1/2 when 72  

equals 4 a, [see Fig. (2)]. The three nonlinear parameters p, p, and uD are adjusted 

to approximately minimize the weighted error in the interaction potential for all ge- 

ometries having rl or 7 2  greater than 2 a,. The weight function used when 71 or 
7 2  > 2a, is (IVMRC'I + lmEh)-', where VMRC' is the ab initio interaction poten- 
tial at  these geometries. The parameters d i R  and d L R ( R  = 6.5 a,) are adjusted to 
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minimize the error in the points with t, small and to produce good agreement with 
the potential expansion coefficients in the vicinity of the Van der Waals minimum 

given in Ref. [25]. The final parameters are given in Tables VI1 and VIII. The rms 
error for the fit to V T i f g D  is 0.29 rnEh and the weighted rms error for the points 

with 71 or r2 greater than 2 a, is 1.8~10-~. 
The quality of the Van der Waals well can be estimated from Fig. (3). Here 

the first two functions [(ql,qz,p) = (O,O,O), (2,0,0)] of an expansion like Eq. ( 5 )  

of VAB+CD is shown along with the data used to adjust the parameter dLR(R = 
6.5 a,). The agreement is quite good. To be consistent with any systematic errors 
introduced in calculating the spherical average of the potential, we used the same 

method as in Ref. [25], namely that the interaction potential at  the four geometries 
(linear, T-shaped, parallel, and crossed) and the difference between the interaction 

potential for a trapezoidal and parallelogram geometry is fit to a five term angular 

expansion. In addition, this figure shows the results of accurate calculations of the 

expansion functions. These were obtained by using converged numerical quadrature 

and the orthogonality of the yqlqZp. The two methods of calculating the expansion 

functions do not differ greatly. Finally, this figure show the accurate expansion 

functions for the potential denoted DHR by Ref. [7]. These will be compared in 

detail in Sect. IV. 

It should be noted that the angular expansion we use is different than that 

used in Ref. [25], however the two expansions are equivalent and are related by a 

nonsingular transformation. 

In addition to the expansion functions, we have computed the geometry of 
the Van der Waals minimum and it has R=6.27, 71 = 72 = 1.402 a,, 61 = 7r/2, 

B2 = q5 = 0, and has a dissociation energy of 0.14 kcal /mol .  

The remaining facet of the fit concerns the drawing of the bonds, i.e. whether 

the system is best described as AB + CD, AC + BD, or AD + BC. This ambiguity 

is resolved by defining a weight function for each of the three ways of drawing the 

bonds which picks out the appropriate way. To do this, define the quantity V A B + C D  

as 

V A B + C D  = + 72 ) I-', 
c -  

(33) 
-2  1/2R 

where r l ,  7 2  and R are a subset of the jacobi coordinates for drawing the bonds 
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as AB + CD. Of the three ways of drawing the bonds, the minimum value of 
V A B + C D ,  V A C + B D  and VAD+BC will likely indicate the most physical situation. 

The motivation for the functional form of Eq. (33) is as follows: in general the 

bonds should be drawn to minimize the individual bond lengths and maximize R. 
A differentiable expression for rnin(t1, t 2 )  is obtained by using [r;” + I ; ~ ] - ~ / ”  and 
taking the limit as n goes to 00, however the simplest case of n = 2 seems adequate 

0 

I 

I for the present application, thus ~ A B + C D  is approximately equal to rnin(t.1, r2 ) /R .  
The motivation for maximizing R can be seen by considering a linear arrangement 

of the atoms in the order ABCD. If the atoms B and C were closer together than 

A and B or C and D, then a rule based only on rnin(r1, t 2 )  would select AD + BC 
as the appropriate way to draw the bonds. However if the distance between A and 

B and the distance between C and D were equal, R for the arrangement AD + BC 
would be zero. Thus maximizing R also would, for this example, select AB + CD 
as the appropriate way to draw the bonds. Combining these ideas, we take the final 

potential to be 

= [ S A ( q A B + C D ) V A B + C D  + SA(vAC+BD)VAC+BD + s A ( T A D + B C ) V A D + B C ] /  

[ S A ( V A B + C D )  + S A ( q A C + B D )  + S A ( q A D + B C ) ] ,  

(34) 

P A  a parameter we take to be 20. This final potential is symmetric with respect to 

interchanging any two H atoms. 
An interesting quantity for a potential such as the current one which allows the 

possibility of hydrogen atom exchange, is what is the barrier for such an exchange. 
If the transition state for exchange is the square planer geometry, then the current 

potential predicts a barrier of 144 kcal/mol with a side of length 2.7 a,. This 
compares favorably with the ab initio value of 140 kcal/mol at 2.4 a,[26,27].  

One unfortunate aspect of the present potential is that it is fairly time con- 

suming to evaluate. In the trajectory calculations we require the gradient of the 

potential, and we calculate the gradient with respect to the six atom-atom distances 

and transform those derivatives using the chain rule to the form required by the 

equations of motion discussed below. The majority of the time spent evaluating 
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- 
the gradient is spent determining the factor a#/aRii for the three different sets of 
jacobi coordinates. These factors are required for any potential which is symmetric 
with respect to exchanging any two hydrogen atoms and has the correct long range 

quadrapole-quadrapole interaction. Thus there is nothing special about the present 

potential which makes it expensive to evaluate. 

111. Dynamics Calculations 

0 

We follow Roberts et a1.141 and calculate the rate constant k3B defined by 

d [ H z ] / d t  = k”B[H]’[M], (36) 

for the process 

H + H + M * H2 + M ,  (37) 

by modeling the recombination process as occurring via the steps 

H + H - H i ( i ) ,  (38) 

and 

H;( i )  + M + H2(n)  + M ,  (39) 

where M is thermal H2, H ;  is a quasibound state of Ha, i labels a particular 
0 

quasibound state and n labels a particular bound state. This is the energy transfer 

mechanism. If the rate determining step is the process of Eq. (39) and the process 

of Eq. (38) is at equilibrium, then the rate constant can be written 

i ,n  i 

where Kf, is the equilibrium constant for Eq. (38), k{n is the rate constant for Eq. 

(39), if is k,f,  summed over It, and T is the temperature. 

If Eq. (38) for a particular quasibound state is not at  equilibrium, then as 

calculated via Eq. (40) would be too large if that quasibound state was included in 

the sum. Thus we estimate nonequilibrium effects by simply neglecting. all contri- 

butions to the overall rate due to that quasibound state[4]. Hence the quasibound 
partitioned into two groups, those that are approximately at equilibrium 

that are not. This is accomplished by computing the critical times [4] for 

states are 

and those 
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each quasibound state. The rate constants i{ are'required to calculate these critical 

times, however as the criterion for rejecting a particular critical time is approximate, 
we also approximate the rate constants by using hard sphere rate constants for the 

calculation of the critical times. These calculations are carried out for several tem- 

peratures and hard sphere parameters, and the net result is that quasibound states 
with resonance widths greater than about 0.001 cm-' can be considered to be at 

equilibrium for the temperatures considered in the present study. Of the resonances 

characterized in Ref. [ll], 38 can be considered to be at equilibrium (we use the 
resonance parameters calculated using the most accurate potential which includes 

estimates of nonadiabatic effects). In previous work [4,7,8], the list of quasibound 

states considered to be in equilibrium also included the v = 14, J = 4 state, how- 

ever more accurate calculations [ll] indicate that this state should be excluded. 

An additional restriction used previously [4,7,8] was to neglect quasibound states 

which have small equilibrium constants by virtue of their relatively high energies 

- this pared the list down to 6 quasibound states. However, because of the high 
temperatures considered here, we do not make this additional restriction. 

0 

The three-body recombination rate constant will be evaluated using the qua- 

siclassical trajectory method. The third body M is taken to be thermal Hz, that is 

the rate constant k f ,  of Eq. (40) is given by 
e 

where m, m' are indicies labeling the bound states of H2, Pm is the probability of 
being in state m at temperature T ,  and kim-nmt is a state-to-state rate constant. 

The probability Pm is given by 

K. is Boltzmann's constant, and 

1 J odd; 
3 J even. gJ = { (44) 
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The sum in Eq. (41) is accomplished by randomly selecting the initial state rn 
with probability P m  as described in Ref. [28]. The states included in Eq. (41) are 

characterized using the WKB method and include only those having energies em 

less than the dissociation energy. In particular, the energies em are determined by 

searching for energies where the vibrational action Jv given by 

J v  

is equal to 

with u an integer. 

(45) 

Jv = (u  + 1/2)h, (46) 

Above, p~~ is the reduced mass of H2, and Jr is the classical 

rotational angular momentum and is given as 

J the quantum mechanical rotational angular momentum quantum number. 

The sum in Eq. (40) will be evaluated in a similar manner to that used with 

Eq. (41). To do this, we write the equilibrium constant in the form 

Ki eq = Neq(T)Pi(T), 0 
where the probability Pi is given by 

i and i' quasibound state indicies, and the factor N e q  is given by[4] 

(48) 

mH the mass of an hydrogen atom. Then the recombination rate constant is given 

by 

i ,m n,m' 

Each trajectory is initiated by specifying a temperature T, a maximum impact 

parameter b,,,, an initial separation d and by the choice of 12 random variables 
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(<I,  ..., ~ 1 2 )  uniformly distributed with 0 5 <i < 1 and one random variable from a 
modified normal distribution. The first random variable $1 selects the initial state 

m using the probabilities P,. This determines the internal energy and classical 

rotational angular momentum J r  for the bound Ha molecule. The initial state of 

the quasibound Hz is determined by $2 from the probabilities p; - this determines 
the classical rotational angular momentum. The internal energy is fixed using a 

random variable selected from a modified normal distribution as discussed in detail 

below. Next the initial relative translational energy Ere1 is set by finding the root 

of 

(3 = 1 - e x p ( - E r e l / K T ) ( 1 +  E r e l / K T ) ,  ( 5 2 )  

which produces a Boltzmann distribution for Erel [28]. The initial impact parameter 

b is then found from 

(53) 
112 b =  bmrlzS* * 

From the masses, d,  b,  and E r e l ,  the initial Cartesian coordinates and velocities of 

the centers of mass of the two H2 molecules are fixed. The centers of mass are 

placed on the z axis, separated by d, and the initial velocities lie in the x z  plane. 

The initial coordinates and velocities of each diatom are determined by the ran- 

dom variables (5-(8 or (9-<12. First the initial bond length and its time derivative are 
determined as in Ref. [29] by numerically integrating the vibrational motion over the 

fraction ~5 of the vibrational period. Next the orientation of the rotational angular 

momentum vector w' is determined by the spherical polar angles urccos[2(gG - 1 / 2 ) ]  

and 2 ~ ~ 7 .  The magnitude of w' is given by 

e 

Finally the rotational phase is specified by (8. With this information the Cartesian 

coordinates and velocities of the atoms with respect to the center of mass of the 

diatom are fixed. The same procedure is then used with 56-512 for the second 
molecule. This information, combined with the position and velocities of the centers 

of mass, completely specifies the initial conditions of the four atoms. r -  

We next discuss in detail our selection of the initial internal energies of the 

quasibound states. For the evaluation of the probabilities P;, we will use the en- 

ergies from the most accurate potential of Ref. [ll], which includes estimates of 
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nonadiabatic effects. The use of the accurate energies presents a problem for some 

of the quasibound states, because sometimes the resonance energies lie above the 

centrifugal barrier, thus these states are not classically bound. In the previous 

studies, this problem was avoided by modifying the diatom potential(71 or by arbi- 

trarily decreasing the energy[8] so that these states became classically bound. Here 
another approach is taken. We interpret the quasibound states as states with un- 

certain energies. In particular, rather than ascribing the energy ci  to all quasibound 

states labeled by i, the energies are chosen randomly from a probability distribution 

peaked about ci. The distribution used is a modified normal distribution given by 

0 

€ > VJi - 6; 
€ < 6; 

€-I?' 2 N i e z p [  - (e) I, otherwise, 
(55)  

where VJ is the height of the centrifugal maximum for angular momentum J, 6 is 
a small number taken to be 4pEh, Ni is a normalization constant, and ri is the 

resonance width for quasibound state i. The energies generated by this distribution 

are calculated using the rejection method using the unmodified normal distribution 

as the comparison function[30]. 0 All uniformly distributed random numbers were generated by shuffling a multi- 

plicative congruential quasirandom number sequence. The shuffling was performed 

using algorithm B of Ref. [31] using the parameter k = 99, and the parameters 

used for the multiplicative congruential generator were modulus 2G4 and multiplier 

6364136223846793005 [31]. The reasons for using this random number generator 
are twofold. First of all it is machine independent so that calculations performed 

on different computers can easily use the same random number sequences, which is 

useful for comparing results. Secondly, and more importantly, it is a much higher 
quality random number generator than is typically available from operating system 

libraries. In the present application where we are performing monte carlo inte- 
gration of high dimensionality, it is probably important that high quality random 

numbers are used. r -  

The final state analysis is the same as used previously[7], namely diatoms with 

energies less than the dissociation energy are considered bound and all others are 

not. We will use stratified sampling(291 for calculating the final rate constants, i.e. 
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, different trajectories for a given T will have different values of bma,. We use two 

values of bma,, called bl and b ~ .  Then if Ni is the total number of trajectories for a 
given temperature and NIPound is the number of trajectories which resulted in two 

bound H2 molecules when bi-1 < b 5 bi (bo is zero), then the recombination rate 

constant is given by the expression 

) l j 2 7 r  c(b,? - b ~ - l ) N ~ o u n d / N i ,  
8rcT 

= Ncq(T)(  
7 r p H 2 + H 2  i 

the reduced mass for H2 + H2 collisions. The one sigma error associated 

with this quantity is 

(57) 
The actual integration of the trajectories will be now discussed. The integration 

coordinates used are a generalization of those used in Ref. 1321, namely we initially 

require that the center of mass of the system be stationary at the origin of our 

Cartesian coordinate system - then the motion of the four atoms with respect to 

the center of mass is determined by 9 Cartesian coordinates and their conjugate 

momenta. We use as the 9 Cartesian coordinates the coordinates of the first three 

atoms. 
In general if there are N atoms, and the center of mass is stationary at  the 

origin, we can use as independent coordinates the Cartesian coordinates of the first 

N - 1 atoms. If these coordinates are denoted by the column vector q with elements 

(z1,y1, ZI, 52, ..., Z N - ~ )  for atoms 1 , 2 ,  ..., N - 1, then the kinetic energy Ekin can 
be written 

1 
E k i n  = iq'Mq, ( 5 8 )  

where - denotes time derivative, T transpose, and the matrix M has elements defined 

by 

mk + mz/mN, 
mkmp/mN, 

The Hamiltonian is then given by [33] 

1 

i = j = 3(lC - I )  + 1,1 =1,2, or 3; 
i = 3 ( l ~  - 1) + I, j = 3 ( p  - 1) + =I,z,  or 3; (59) 

r -  i, otherwise. 
M,j = 

H = -pTM-'p 2 + V ,  (60) 
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where V is the potential energy 

Hamilton's equations of motion 

and the conjugate momenta p are given by 

p = Mq. 

are then 

and 

We have considered two numerical methods for integrating Eqs. (62) and (63). 
Originally we used the fourth order Adams-Bashforth-Moulton predictor-corrector 

algorithm, with fixed time steps[34], which is a common integrator used for classical 

trajectories [28]. However as pointed out previously [7], it is necessary to take very 
small time steps to obtain accurate results because at certain times the atoms can 

have very high velocities. This happens when a diatom is near its equilibrium 

separation when its kinetic energy can be close to the bond energy of Hz. However 

most of the time, the atoms will be moving much slower, thus much computational 
effort is wasted using a fixed stepsize integrator. For this reason we seek an efficient 

variable stepsize integrator. 

The results of tests of several different integrators for classical trajectories was 
reported in Ref. [28], and the one we have chosen to develop is the Burlisch-Stoer 

method [34,35]. This method is recommended in Refs. 128,341 over several other 
methods. An important advantage which will be exploited here is that variable time 

steps can be used and programmed in a manner which does not have a detrimental 
effect on the efficient use of the vector capabilities of modern supercomputers. This 

method and our modifications to it are now described in detail. 

In the Burlish-Stoer method, in order to integrate the differential equations 

over some time increment H, one performs several calculations using a low order 

method ( the modified midpoint rule ) which differ in the time steps used. The 

time steps are from the special pattern h = (H/2, H/4, H/6, H/8, H/12; ...), and the 
results are extrapolated to zero stepsize using a rational function. No information 

from previous steps is required for the current step, thus the method is self starting, 

I -  
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unlike the Adams-Bashforth-Moulton method, and also the time increment can be 

i changed at will. It should be noted that the time interval H is typically much larger 

than the stepsizes used by other integrators, thus this method is not a good one if 

the solution of the differential equation is required on a fine time grid. 

In the implementation of integrating a single set of coupled differential equa- 

tions, it is typical to extrapolate the results after each modified midpoint calculation, 

and continue decreasing the time step until the extrapolation converges. Then the 

time interval H is adjusted so that the expected number of integrations required for 

convergence at the next time step will be some predetermined optimum numberl341. 

However in the present application, we will take advantage of vector processing by 

simultaneously integrating a number of independent trajectories, thus it will not be 

efficient to keep decreasing the time step until the trajectory which is most diffi- 

cult to integrate is converged. Thus we modify the above scheme by integrating all 

trajectories using a predetermined number of stepsizes. Each trajectory will have 

its own time increment. After the integrations over a time increment are carried 

out, the errors in the extrapolations from the various stepsizes are checked. If the 

errors are small enough, the time interval H for that trajectory is increased and 

the clock is advanced. If the errors are too large, the results from the time incre- 

ment are thrown away, H is reduced and the clock is not advanced. Occasionally 

the trajectories are checked for completion, and if required, finished trajectories are 

removed and new ones are started. This scheme is vectorizable except where the 

time increment H is changed and end tests are performed, but these steps usually 
amount to an insignificant portion of the total resources required in a calculation, 

thus this algorithm runs efficiently on vector pipeline supercomputers. 

@ 

We now discuss some details of the algorithm, in particular how the errors are 

estimated and the time interval is changed. Let the number of different time steps 

per time interval H be N T S  and define the quantity (:i) to be the j’th integration 

function (one of the 6 N  - 6 coordinates and conjugate momenta) resulting from 

the i’th extrapolation using the first i time steps. We estimate the errors of the 
extrapolations to be 

r -  
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To remove the.-units in this error and to smooth out the variations from trajectory 

to trajectory, this error is scaled by the rms initial value of either all coordinates or 

all momenta for this trajectory - this produces a relative error called A[:i). Finally 

the maximum error over all j is called A(*) and this is used to characterize the error 

obtained using i time steps. This error is compared to an error tolerance parameter 
E ,  and the largest value of i for which A ( i )  is greater than is determined - this 

value of i is called ic - 1. If all A(') are greater than or equal to f ,  then the 

error is unacceptably large and the time increment H is reduced by a factor of 

1 / N N T S / 2 '  S t e p  where N f t e P  is the ratio of the time increment H to the time step h for 
integration i. If ic is less than N T S ,  then the time increment is increased by the 

factor [ ( P I N T S  /Nit+,) + w J / ( 1  + w ) ,  where w is a fixed damping parameter which 
we usually take equal to 112. 

S t e p  S t e p  

. In practice, this time increment changing algorithm works quite well - see 

Fig. (4) where the relative error versus CPU time is compared for the current 

method and the Adams-Bashforth-Moulton method. For the present application 

the Burlisch-Stoer method is always more efficient then the Adams method, and 

its superiority increases rapidly as the desired relative error decreases. Thus there 

is less motivation to scrimp using the present method, for a small increase in CPU 

time can produce a large increase in accuracy. The data for this figure is based on 

calculations with N T S  equal to 5 ,  w equal to 1/2, which experiments show to be 

about optimum for the present application. In general larger values of N T S  allow 

larger time increments but if the time increment becomes too large, the terrain 
covered in a single increment will be sufficiently varied so that it is not possible to 

make significant adjustments to the time increment. This tends to favor smaller 

values of N T s  for the present application. Initial conditions for the trajectories 

were selected as described above for a temperature of 5000 K ,  b,,, equal to 8 a,, 

and an initial separation d equal to 15 a,. The potential pk,"" was use for these 
calculations. Ten trajectories were integrated forward for a time of 8000 u.u., then 

back integrated for a time 8000 U.U. The times reported as the abscissa are the 

average CPU seconds for each trajectory using a single CPU on the-Ames ACF 

Cray-XMP/48. Since these were obtained running only ten trajectories and did 

not use the accurate potential, they are not indicative of the times required for 
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our production calculations. We estimate that our production calculations require 

about a factor of five less time under these conditions. The relative error reported 

is the rms relative difference between all of the initial position and momentum 

variables and their back integrated values. The value of 8000 U.U. is a typical 

integration time for the conditions used here. The initial value of H was take to be 

10 U.U. for all calculations of Fig. (4). As an example of the changes made to H, 
when 6 was l ~ l O - ~ ,  H ranged from 7.6 to 87.7 u.u., an average of 195 successful 

and 23 unsuccessful time increment steps were taken per trajectory and the rms 

relative error was 6.2 x Another advantage of a variable stepsize integrator 

is that the errors for each trajectory are about the same - when the rms relative 

error was 6.2~10-~, the rms relative errors for individual trajectories varied by 

a factor of 53, while when using the Adams-Bashforth-Moulton method with a 

stepsize giving a similar rms relative error of 1.9~10-~, the rms relative errors for 

# 

individual trajectories varied by a factor of 3200. 

Although the increment changing algorithm works well, it suffers from sev- 

eral potential drawbacks. First consider the determination of the error A(:'). 
As presently described, if one were to change the initial separation between the 

molecules, but nothing else, the integrator would allow larger errors because the 

scaling factor, which is based on the rms initial conditions, would be increased. An- 

other manifestation of this is that trajectories with larger initial impact parameters 

would be allowed to have larger errors. An additional question is what the relative 

weighting of the errors in the coordinates and the momenta should be for optimum 
performance. Turning to the time increment changing algorithm, it  always tries to 

increase the time increment until it is too big and a step is rejected. It would be 

better to have some method of slowly decreasing the time increment as the errors 

get larger, however this would increase the complexity of the algorithm. Once it 

has been decided to increase the time increment, the factor we use to increase it is 

somewhat arbitrary, and situations may arise where increasing the time increment 

by NNTS/lV$Yl would lead to a excessively large increment. The inclusion of the 

damping parameter 20 is an attempt to forestall this possibility of increasing the 

time increment too quickly and then having to decrease it right away. The time in- 

crement decrease factor is also arbitrary, however it seems to satisfy two important 
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properties, namely that it is unlikely that two decreases occur consecutively and 
that the increase algorithm can overcome the rapid decrease in a few applications, 

if the error is small enough. 

An additional aspect of the present calculations concerns the question of the 

number of trajectories to be integrated simultaneously. The larger the number, the 

more efficient the calculations will be since we use vector pipeline supercomputers 

(various calculations were performed the the Ames ACF Cyber 205, Cray-XMP/48, 

or the NAS facility Cray-2). On the other hand, larger numbers require more com- 

putational resources. For most production calculations, we integrate a maximum 

of 500 trajectories simultaneously. This number is large enough so that significant 

additional speedups are not possible by increasing it further. 

IV. Results and Discussion 

The main results of this paper are given in Table IX. The rate constants for each 

temperature are based on the results of 4000 trajectories which produces statistical 

one sigma errors of about 5 %. All calculations use an initial separation d equal 

to 15 a, and were terminated when any atom-atom distance exceeded 27 a,. The 

maximum impact parameters ( b 1 , b ~ )  varied from (6.4,8) a, at 5000 K to (8.4,12) 

a, at 100 K. Most calculations used the integration parameters NTS=5, w = 1/2, 

6 = 1 x and a initial time increment of 10 a.u. The remaining calculations 

used an earlier version of the error control algorithm and should produce results of 

commensurate accuracy. 

At low temperatures, no exchange processes occurred and so it was probably 
not necessary to force the potential to be symmetric with respect to exchanging 

atoms, but at higher temperatures this symmetry is more important. For 2000 K ,  
0.13 '% of the trajectories ended up in other than the initial arrangement AB + CD, 
at 3000 K the number was 1.0 % and at 5000 K ,  3.7 %. Also it is not known 
how many trajectories crossed only temporarily into other arrangements, thus it 

is probably good that our potential is symmetric. The 144 kcaZ/moZ barrier to 
exchange may seem too large to allow any exchange reactions, but the quasibound 

states have at  least 109 kcaZ/mol of energy making the effective barrier no more 

than 35 kcallmol. Thus the exchange rates we observe are not unreasonable. 

r -  

In addition to Table IX, our results are also shown in Fig. 5 along with several 
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experimental measurements of the recombination rate constants[l,36-411. We show 
the results of the measurements of one laboratory for a range of low temperatures 

where the measurements of various groups agree fairly well, and the results of 
several groups at high temperature to  show the spread obtained there. At 100 
K, the theoretical results are too small by a factor of about 3, and at  the higher 

temperatures, the theoretical results are about half of the recommended values. 

The temperature dependence of the present results are similar to estimates of the 

experimental temperature dependence, however they tend to fall off too quickly 

at  low temperature (T < 200 K ) .  For high temperature, the theoretical results 

also appear to fall off too quickly, however the situation is less clear because of the 

uncertainty in the experimental measurements. In analyzing the experiments, it is 

common to assume that = A/T" [36-38,401, and some in experiments, there 

is insufficient information to accurately determine the exponent rn so a value of 
one is assumed 136-381. Thus the experimental temperature dependence is not well 

determined over the range 3000-5000 K .  

Because of the relatively poor agreement with experiment, it is interesting to 

compare to the results of previous calculations. The two temperatures in common 

are 100 and 300 K where we obtain 1.84 x1015 cm6 mol-2 sec-' and 1.52 x1015, 

Whitlock e t  a1.[7] obtain 6.6 x1015 and 4.2 x1015 using their DHR potential, and 

experiment gives 6.250.7 x 1015 (this is estimated from the graph of Ref. (411) 
and 3.050.2 x 1015 ( at 298 K [41]). The results of Whitlock et  al. [7] are in 
better agreement with experiment than our presumably more accurate calculations. 

A detailed analysis shows that the differences between the two calculations are 
primarily due to a combination of the differences in the interaction potential and 

the differences in the diatomic potential. If we repeat our calculations using the 

DHR potential of Ref. [7] instead of the ab initio interaction potential of Sect. I1 
(we use our accurate diatomic potential), we obtain 4.09 x1015 and 2.73 ~ 1 0 ' ~ .  
The 300 K results of this calculation are in even better agreement with experiment 

and further calculations using the DHR potential at  higher temperatures continue 

this trend [see Fig. (6)]. 

0 

r -  

We may then ask if the DHR potential is more accurate than the ab initio 
potential since it produces results which are in closer agreement with experiment. 
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If this were so, it would be quite surprising for the DHR potential is very simple, 

comprising of the sum of pairwise interactions. It is not easy to pin point the features 

of the potentials primarily responsible for the differences in the dynamics, however 

it is possible to single out two differences. First of all consider Fig. (2) where the 
dependence of the interaction potential on bond length is shown. The ab initio 

calculations clearly indicate that for bond lengths near equilibrium, the potential 

increases as the bond length increases and as the bond length becomes larger, this 

trend reverses. In contrast, for the geometry of this figure, any pairwise potential, 

including the DHR potential, will cause the potential to monotonically decrease as 
the bond length increases. This difference in force should have a profound effect 

when both molecules are near their equilibrium displacement (421. Next consider the 
anisotropies of the two potentials. These are also very different when both molecules 

are near their equilibrium separation - this is shown in Fig. (3). For R less than 5 a,, 

the DHR potential gives a leading anisotropy which is an order of magnitude larger 

than the a6 initio potential. The spherical average of the DHR potential agrees well 
with the ab initio potential. The differences in the anisotropies should have a big 

effect on rotational energy transfer. It is beyond the realm of possibility that the 

ab initio calculations have errors so large that the DHR potential is the accurate 
potential for the features just discussed, however these features are not necessary 

the primary progenitors of the differences in the dynamics calculations. However, 

it is most likely that the ab initio potential is much more globally accurate than the 

DHR potential and that the good agreement with experiment obtained using the 
DHR potential is due to fortuitous cancellations of error. 

@ 

There are several possible reasons why the present calculations underestimate 

experiment by such a large factor. First of all there are errors in the present results 

because of the use of an approximate potential energy function. However prelim- 

inary results obtained on different potentials based on the ab initio calculations 
were quite similar to the present results and so it seems unlikely that reasonable 

variations in the potential alone could make up for the difference. Another fault 

of our calculations is that they use classical dynamics. Classical dynamics has not 
been tested for a system such as this one, however one usually expects reasonable 

accuracy for calculations involving highly excited states, such as those involved in 

r -  
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the present study. On the other hand, classical dynamics is unreliable for describ- 

ing processes for which tunneling plays an important role. Thus the present use 

of classical dynamics must be treated with some suspicion because of the presence 

of hydrogen atoms which can undergo large amounts of tunneling. In addition, 

tunneling plays an important role in the formation and decay of the quasibound 

states. 

a 

Furthermore, several processes are omitted from the present calculations, 

namely the possibility of direct association from the continuum as well as contribu- 

tions to the recombination rate from other processes involving quasibound states, 

e.g. the chaperon mechanism: 

Estimates from Ref. (4) indicate that direct association from the nonresonant con- 

tinuum relative to the association from the quasibound states will become more 

important as the temperature increases, however if this was the main cause for the 

underestimate, then one would expect that the present results would underestimate 
experiment by increasing amounts as the temperature increases. This contrasts to 

the approximately constant underestimate of a factor of two over a fairly broad 

temperature range, thus it seems unlikely that the neglect of direct association is 
the primary fault of the present calculations. As far as the chaperon mechanism is 

concerned? it seems to be important only at lower energies than we consider here 

[5-7j. However, this mechanism may be responsible for the underestimate at  low 

temperatures [see Figs. (5 ) - (6 ) ] .  It should be noted that a converged quantum 
mechanical dynamics calculation would properly take into account the role of the 

continuum and the chaperon mechanism 

Finally one can consider the possibility that the resonance complex mechanism 

is not the proper route for calculating the recombination rate constants - this is 

because the bottleneck for the association may occur elsewhere when nonequilibrium 

and redissociation processes are considered. In particular Ashton et al.[43] conclude 
from their model calculations that the primary bottleneck occurs in the relaxation 

of bound vibrational states close to the dissociation limit. Thus the results of 
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the resonance complex mechanism should be an upper bound to the true rate of 

recombination which then means that the underestimate of the present calculations 

is even greater than indicated in Fig. ( 5 ) .  

9 1 1 .  !’.. 

0 
There exists one more possibility for explaining the underestimate, namely 

that the experimental results are systematically high. However this seems unlikely 

due to  the degree of agreement between various experimental workers and we will 

not consider this as an serious proposition until the approximations in the current 

theoretical work have been more thoroughly tested. 

V. Conclusions 

We have carried out calculations of the recombination rate constants for the 

process H + H + Hz + 2H2 using a quasiclassical trajectory implementation of the 

energy transfer mechanism of the resonance complex theory. A new global poten- 

tial energy function for Hd is constructed which should be accurate for geometries 

important to the dynamics calculations. In spite of the quality of these inputs into 

the calculation, the agreement with experimental results is not very good with the 

theoretical results about a factor of 2 too small over the temperature range 300 - 
5000 K .  Of the are several possible causes for this underestimate, the most likely 

reason is the importance of quantum effects. This and other limitations must be 
studied in order to predict with confidence three body recombination rate constants 

for hydrogen containing compounds. 
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Table I. Parameters for the analytic representation given in Eqs. (1)-(4) of the 
'Hz X 'Cg' potential curve. All parameters are in atomic units and are valid only 
for the isotope of H with mass 1 amu. 

. 

3.5284882 
6.499027 
124.3991 
3285.828 

0.160979391 
1 

0.03537359271649620 
2.013977588700072 

2.713257715593500 

2.166542078766724 

-2.827452449964767 

-2.79203923420573 1 

- 1.272679684173909 
0.5630423099212294 

0.04719891893374140 

0.001224998776243630 

-0.1879397372273814 

-0.00885 1622656489644 

-1.227820520228028( -4)* 
8.638783190083473( -6) 

-4.036967926499151 (-7) 
1.123286608335365(-8) 

- 1.406619156782167(-10) 

~ ~~~ 

a From Ref. [13]. 
The number in parenthesis is the power of ten multiplying the number. 

c -  
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Table 11. Computed energies in kh for separated H2 + Hz. 

ECAS E M R C I  

1.000 
1.401 
3.000 
5.000 
20.00 
1.000 
20.00 

1.401 
1.401 
1.401 
1.401 
1.401 
1 .ooo 
20.00 

-2.2501723 
-2.3040214 
- 2.2002567 
- 2.1548434 
-2.15 19998 
-2.1963232 
- 1.9999781 

- 2.2951620 
-2.3456759 
-2.2286053 
- 2.1762882 
- 2.1729908 
-2.2446483 
- 1.9999782 
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Table 111. Computed energies in Eh for linear geometries. 

e 
r2 R E C A S  EMRCZ 

1.000 
1.401 
1.401 
1.000 
1.401 
1.401 
1.000 
1.401 
1.401 
' 1.000 
1 .ooo 
1.401 
1.401 
3.000 
5.000 
1 .ooo 
1.401 
1.401 e 

1 .ooo 
1 .ooo 
1.401 
1.000 
1 .ooo 
1.401 
1.000 
1 .ooo 
1.401 
1.000 
1.401 
1 .ooo 
1.401 
1.401 
1.401 
1 .ooo 
1 .ooo 
1.401 

3.0 
3.0 
3 .O 
3.5 
3.5 
3.5 
4.0 
4.0 
4.0 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
5.0 
5 .O 
5 .O 

- 2.1489968 
- 2.1895079 
-2.2277344 
-2.17695 10 
-2.2242814 
-2.2708059 
-2.1885540 
-2.2392485 
- 2.289400 1 
-2.1932777 
-2.2456559 
-2.2456556 
-2.2976739 
-2.18 10055 
- 2.079563 1 
-2.1951517 
-2.2483393 
- 2.301 3097 

-2.2021605 
-2.24 11766 
-2.2782a35 
-2.2280992 
-2.2732647 
-2.3 180081 
- 2.2384542 
-2.2864936 
- 2.3342640 
-2.2424759 
- 2.2918954 
-2.2918956 
- 2.34 11200 
- 2.2 164670 
-2.1188059 
-2.2439630 
- 2.2940230 
-2.3439591 

36 



Table IV. Computed energies in E h  for T shaped geometries. a 
f 1 72 R E C A S  E M R C I  

1 .ooo 
1 .ooo 
1.401 
1.401 
1 .ooo 
1.000 
1.401 
1.401 
3.000 
5.000 
1 .ooo 
1.000 
1.401 
1.401 
1.401 
3.000 
1.401 
5.000 

1.000 
1.401 
1.401 
1 .ooo 
1.000 
1.401 
1.401 

1.000 

1 .ooo 
1.401 
1 .ooo 
1.401 
1 .ooo 
1.401 
1.000 
1.401 
1.401 
1.401 
1,000 
1.401 
1 .ooo 
1.401 
3 .OOO 
1.401 
5.000 
1.401 
1 .ooo 
1.401 
1.000 
1.401 
1 .ooo 
1.401 
1 .ooo 
1.401 

3 .O 
3.0 
3.0 
3 .O 
3.5 
3.5 
3.5 
3.5 
3.5 
3.5 
4 .O 
4.0 
4 .O 
4.0 
4.0 
4 .O 
4.0 
4.0 
4.5 
4.5 
4.5 
4.5 
5.0 
5.0 
5.0 
5.0 

-2.1581148 
- 2.20261 22 
-2.2083495 
-2.2534653 
-2.1806088 
-2.2294472 
-2.2322244 
-2.281 1433 
- 2.1 774572 
-2.1459055 
-2.1900624 
-2.2414512 
-2.2427205 
- 2.2940422 
- 2.1 71 5427 
-2.1892 140 
-2.0467742 
-2.150084 1 
-2.1939053 
-2.2466281 
-2.2471777 
- 2.2998260 
-2.1954200 
-2.2487844 
- 2.24901 11 
- 2.3023270 

-2.2109995 
-2.2541250 
-2.2584915 
- 2.3025 120 
- 2.23 15200 
-2.2781860 
-2.2802336 
-2.3271734 
- 2.2 105028 
- 2.1699190 
-2.2398409 
-2.2885466 
- 2.28945 77 
-2.3382245 
- 2.2091 528 
-2.2205532 
-2.0870823 
-2.173 1692 
-2.2430450 
-2.2927943 
-2.2931 716 
- 2.3429269 
-2.2442018 
-2.2944316 
- 2.2945 755 
-2.3448057 

r -  

37 



Table V. Computed energies in Eh for parallel shaped geometries. 

e 
R E C A S  E M R C I  

1 .ooo 
1.401 
1.401 
1.401 
1 .ooo 
1.401 
1.401 
1 .ooo 
1.401 
3.000 
5 .OOO 
1 .ooo 
1.401 
1.401 
1 .ooo 
1.401 
1.401 
1 .ooo e 1.401 
1.401 

1 .ooo 
1 .ooo 
1.401 
1.401 
1 .ooo 
1 .ooo 
1.401 
1.401 
1.401 
1.401 
1.401 
1 .ooo 
1 .ooo 
1.401 
1 .ooo 
1 .ooo 
1.401 
1 .ooo 
1 .ooo 
1.401 

3.00 
3.00 
3.00 
3.00 
3.50 
3.50 
3.50 
3.75 
3.75 
3.75 
3.75 
4 .OO 
4.00 
4 .OO 
4.50 
4.50 
4.50 
5.00 
5.00 
5.00 

-2.1630376 
-2.2125055 
-2.2614119 
-2.2468856 
- 2.1827285 
- 2.2340995 
- 2.285 1299 
-2.2397741 
- 2.291 5579 
-2.1853072 
-2.1486507 
- 2.1909 127 
- 2.2434838 
-2.2958436 
- 2.1942 165 
-2.2474464 
-2.3005503 
-2.19551 72 
-2.2490789 
-2.3025690 

- 2.214 1120 
- 2.2605994 
- 2.3065803 
-2.3062874 
- 2.2326254 
- 2.28092 17 
- 2.3289184 
-2.2861676 
- 2.3348676 
- 2.2 155281 
- 2.1716260 
-2.2401360 
- 2.2895480 
-2.3387790 
-2.2430549 
- 2.2930622 
-2.3429644 
- 2.244 1340 
-2.2944289 
- 2.3446655 
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Table VI. Computed energies in Eh for cross shaped geometries. . I 

a 
f 2  R ECAS 

1.401 
1 .ooo 
1.401 
1.401 
1 .ooo 
1.401 
1.401 
1 .ooo 
1.401 
3.000 
5 .OOO 
1 .ooo 
1.401 
1.401 
1 .ooo 
1.401 
1.401 
1 .ooo 
1.401 
1.401 
1.401 

1.401 
1 .ooo 
1 .ooo 
1.401 
1 .ooo 
1 .ooo 
1.401 
1.401 
1.401 
1.401 
1.401 
1 .ooo 
1 .ooo 
1.401 
1 .ooo 
1.000 
1.401 
1 .ooo 
1 .ooo 
1.401 
1.401 

2.00 
3.00 
3.00 
3.00 
3.50 
3.50 
3.50 
3.75 
3.75 
3.75 
3.75 
4.00 
4.00 
4.00 
4.50 
4.50 
4.50 
5.00 
5.00 
5.00 
6.00 

- 2.1169936 
-2.1631831 
-2.2129581 
-2.2624792 
- 2.1827569 
-2.2342374 
- 2.2854980 
-2.2398544 
- 2.291 7836 
- 2.1861503 
- 2.1491633 
- 2.1909 183 
- 2.2435329 
-2.2959868 
-2.1942185 
-2.2474683 
- 2.3006 153 
-2.1955189 
-2.2490912 
- 2.3026036 
-2.3037829 

-2.1692110 
-2.2146856 
-2.2615710 
-2.3082718 
-2.2328906 
-2.2813539 
-2.3296479 
-2.2864620 
-2.3353583 
- 2.2 165969 
-2.17 19592 
- 2.2402610 
-2.2897484 
-2.3391111 
-2.2431111 
-2.2931541 
- 2.343 1 180 
-2.244 1593 
-2.2944721 
- 2.344 7394 
- 2.34 55943 
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Table VII. Parameters for the analytic representation of the interaction potential. 
All parameters are in atomic units. 

0.685147 
-0.198019 
0.144382 
0.449685 

1 
1.17467 
1.72657 

2 
0.0198867 
0.0681996 

2 
9.52859 
0.796373 

AP 
BP 
CP 
3a 

P 

aD 
TD 

P A  

P o  

3 
0.196784 
0.508106 

54 
0.4 

0.71 7277143 
1.004716% 
1.27158463 

7 
0.1 
11 
2 

5.4 
20 
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Table VIII. Parameters for the multiplicative correction factor of Eq. (17)4. All 
parameters are in atomic units. 

i j k  i j k  
coo0 

i j k  
c200 

i j k  
c220 

i j k  
c222 

0 0 0  
0 1 0  
100 
1 1 0  
0 0 1  
0 1 1  
101 
1 1 1  

8.2335075( - 1)' 
1.9927182( - 1) 
1.9927182( -1) 

- 2.7306801 ( - 1) 
-2.1105535( - 1) 
8.1872059(-3) 
8.1872059( -3) 
8.1615668(-2) 

9.4069522(-2) 
-2.6657323(-2) 
-1.7873925(-1) 
7.6910059( - 2) 

- 1.7750047 (- 2) 
1.6826832(-2) 

- 3.8437296 (- 2) 
3.7743965(-2) 

7.9142831(-3) 
-8.7591868( -3) 
-8.7591868( -3) 
5.4783229( -3) 
4.5662762( -4) 

-2.4577906( -3) 
-2.4577906( -3) 
8.2469313(-3) 

-4.7369816( -3) 
9.4419462(-3) 
9.4419462(-3) 

- 1.6362036( -2) 
5.3064904( -4) 

-1.7568388(-3) 
- 1.7568388( -3) 
4.0949053(-3) 

a i j k  2 ' i k  
c020 = 200' ' The number in parenthesis is the power of ten multiplying the number. 

r -  e ,  
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Table IX. Three body recombination rate constants. 

T ( K )  k3B (1014 cm6rnol-2sec-1 ) 

100 
300 
1000 
2000 
3000 
5000 

18.4 f 4.5%' 
15.2 f 5.4% 
9.82 k 5.4% 
6.81 i 6.2% 
4.87 f 6.6% 
3.31 k 6.9% 

~ ~ 

a One sigma error bars. 

a 
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Figure Captions. 
Fig. (1): Effective Morse exponent a and t times a as a function of t for the Hz 
potential. 
Fig. (2): The H2 + H2 interaction potential for R = 4, 71 = 1.4 a,, 81 = 4 = 0, 
8 2  = n/2 as a function of 72 for various stages of the fit. 
Fig. (3): Angular expansion coefficients vq lqZp  of the interaction potential as a 
function of R. The bond lengths are 1.449 a,. The DHR potential is from Ref. [7] 
and the PNO-CI and CEPA2 results are from Ref. [25]. 
Fig. (4): A comparison of the relative errors obtained using the Burlisch-Stoer 
(B.S.) algorithm and the Adams-Bashforth-Moulton (A.B.M.) algorithm as a func- 
tion of CPU time. 
Fig. ( 5 ) :  A comparison of the theoretical and experimental recombination rate 
constants . 
Fig. (6): A comparison of the results using the potential of Sect. I1 and the results 
obtained using the DHR potential of Ref. [7] with the estimate of the recombination 
rate based on experiment [I]. 

- 
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