9 research outputs found

    MARIMO cells harbor a CALR mutation but are not dependent on JAK2/STAT5 signaling.

    Get PDF
    Work in the Green lab is supported by Leukemia and Lymphoma Research, Cancer Research UK, the NIHR Cambridge Biomedical Research Centre, the Cambridge Experimental Cancer Medicine Centre, and the Leukemia and Lymphoma Society of America. WW is supported by the Austrian Science Foundation (J 3578-B21). JN is supported by a Kay Kendall Leukaemia Clinical Fellowship.This is the final published version. It first appeared at http://www.nature.com/leu/journal/vaop/ncurrent/full/leu2014285a.html

    Microarray and Proteomic Analyses of Myeloproliferative Neoplasms with a Highlight on the mTOR Signaling Pathway

    Get PDF
    The gene and protein expression profiles in myeloproliferative neoplasms (MPNs) may reveal gene and protein markers of a potential clinical relevance in diagnosis, treatment and prediction of response to therapy. Using cDNA microarray analysis of 25,100 unique genes, we studied the gene expression profile of CD34(+) cells and granulocytes obtained from peripheral blood of subjects with essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF). The microarray analyses of the CD34(+) cells and granulocytes were performed from 20 de novo MPN subjects: JAK2 positive ET, PV, PMF subjects, and JAK2 negative ET/PMF subjects. The granulocytes for proteomic studies were pooled in 4 groups: PV with JAK2 mutant allele burden above 80%, ET with JAK2 mutation, PMF with JAK2 mutation and ET/PMF with no JAK2 mutation. The number of differentially regulated genes was about two fold larger in CD34(+) cells compared to granulocytes. Thirty-six genes (including RUNX1, TNFRSF19) were persistently highly expressed, while 42 genes (including FOXD4, PDE4A) were underexpressed both in CD34(+) cells and granulocytes. Using proteomic studies, significant up-regulation was observed for MAPK and PI3K/AKT signaling regulators that control myeloid cell apoptosis and proliferation: RAC2, MNDA, S100A8/9, CORO1A, and GNAI2. When the status of the mTOR signaling pathway related genes was analyzed, PI3K/AKT regulators were preferentially up-regulated in CD34(+) cells of MPNs, with down-regulated major components of the protein complex EIF4F. Molecular profiling of CD34(+) cells and granulocytes of MPN determined gene expression patterns beyond their recognized function in disease pathogenesis that included dominant up-regulation of PI3K/AKT signaling

    MPN patients harbor recurrent truncating mutations in transcription factor NF-E2

    No full text
    Item does not contain fulltextThe molecular etiology of myeloproliferative neoplasms (MPNs) remains incompletely understood, despite recent advances incurred through the discovery of several different mutations in MPN patients. We have recently described overexpression of the transcription factor NF-E2 in MPN patients and shown that elevated NF-E2 levels in vivo cause an MPN phenotype and predispose to leukemic transformation in transgenic mice. We report the presence of acquired insertion and deletion mutations in the NF-E2 gene in MPN patients. These result in truncated NF-E2 proteins that enhance wild-type (WT) NF-E2 function and cause erythrocytosis and thrombocytosis in a murine model. NF-E2 mutant cells acquire a proliferative advantage, witnessed by clonal dominance over WT NF-E2 cells in MPN patients. Our data underscore the role of increased NF-E2 activity in the pathophysiology of MPNs
    corecore