4,051 research outputs found

    Polarisation dependence of magnetic Bragg scattering in YMn2_2O5_5

    Full text link
    The polarisation dependence of the intensity of elastic magnetic scattering from \ymno\ single crystals has been measured at 25 K in magnetic fields between 1 and 9 T. A significant polarisation dependence was observed in the intensities of magnetic satellite reflections, propagation vector \pv=0.5,0,0.25 measured with both the [100] and [010] axes parallel to the common polarisation and applied field direction. The intensity asymmetries AA observed in sets of orthorhombicly equivalent reflections show systematic relationships which allow the phase relationship between different components of their magnetic interaction vectors to be determined. They fix the orientation relationships between the small yy and zz moments on the \mnfp\ and \mntp\ sub-lattices and lend support to the structure reported by Kim et al. It was found that that A(hkl)≠A(hˉkˉlˉ)A(hkl)\ne A(\bar h\bar k\bar l) which suggests that there is a small modulation of the nuclear structure which has the same wave-vector as the magnetic modulation leading to a small nuclear structure factor for the satellite reflections. The differences A(hkl)−A(hˉkˉlˉ)A(hkl)- A(\bar h\bar k\bar l) observed indicate shifts in the atomic positions of order 0.005 \AA

    Study of the performance and capability of the new ultra-fast 2 GSample/s FADC data acquisition system of the MAGIC telescope

    Full text link
    In February 2007 the MAGIC Air Cherenkov Telescope for gamma-ray astronomy was fully upgraded with an ultra fast 2 GSamples/s digitization system. Since the Cherenkov light flashes are very short, a fast readout can minimize the influence of the background from the light of the night sky. Also, the time structure of the event is an additional parameter to reduce the background from unwanted hadronic showers. An overview of the performance of the new system and its impact on the sensitivity of the MAGIC instrument will be presented.Comment: Contribution to the 30th ICRC, Merida Mexico, July 2007 on behalf of the MAGIC Collaboratio

    Inter-molecular structure factors of macromolecules in solution: integral equation results

    Full text link
    The inter-molecular structure of semidilute polymer solutions is studied theoretically. The low density limit of a generalized Ornstein-Zernicke integral equation approach to polymeric liquids is considered. Scaling laws for the dilute-to-semidilute crossover of random phase (RPA) like structure are derived for the inter-molecular structure factor on large distances when inter-molecular excluded volume is incorporated at the microscopic level. This leads to a non-linear equation for the excluded volume interaction parameter. For macromolecular size-mass scaling exponents, ν\nu, above a spatial-dimension dependent value, νc=2/d\nu_c=2/d, mean field like density scaling is recovered, but for ν<νc\nu<\nu_c the density scaling becomes non-trivial in agreement with field theoretic results and justifying phenomenological extensions of RPA. The structure of the polymer mesh in semidilute solutions is discussed in detail and comparisons with large scale Monte Carlo simulations are added. Finally a new possibility to determine the correction to scaling exponent ω12\omega_{12} is suggested.Comment: 11 pages, 5 figures; to be published in Phys. Rev. E (1999

    Mode-coupling theory for structural and conformational dynamics of polymer melts

    Full text link
    A mode-coupling theory for dense polymeric systems is developed which unifyingly incorporates the segmental cage effect relevant for structural slowing down and polymer chain conformational degrees of freedom. An ideal glass transition of polymer melts is predicted which becomes molecular-weight independent for large molecules. The theory provides a microscopic justification for the use of the Rouse theory in polymer melts, and the results for Rouse-mode correlators and mean-squared displacements are in good agreement with computer simulation results.Comment: 4 pages, 3 figures, Phys. Rev. Lett. in pres

    Evolution of monolayer terrace topography on (100) GaAs annealed under an arsine/hydrogen ambient

    Get PDF
    The topographical evolution of the (100) GaAs surface annealed under an arsine/hydrogen ambient is studied by in situ orientation-resolved light scattering and ex situ atomic force microscopy (AFM). The light scattering system provides real-time monitoring of the magnitude and crystal orientation of topographical features of 0.3 mum scale. The AFM images of the GaAs surface, quenched at various annealing temperatures, vividly depict the randomly oriented high density monolayer steps evolving into an atomically smooth terracelike structure

    Diffuse Neutron Scattering Study of Magnetic Correlations in half-doped La0.5Ca0.5-xSrxMnO3 (x = 0.1, 0.3 and 0.4) Manganites

    Full text link
    The short range ordered magnetic correlations have been studied in half doped La0.5Ca0.5-xSrxMnO3 (x = 0.1, 0.3 and 0.4) compounds by polarized neutron scattering technique. On doping Sr2+ for Ca2+ ion, these compounds with x = 0.1, 0.3, and 0.4 exhibit CE-type, mixture of CE-type and A-type, and A-type antiferromagnetic ordering, respectively. Magnetic diffuse scattering is observed in all the compounds above and below their respective magnetic ordering temperatures and is attributed to magnetic polarons. The correlations are primarily ferromagnetic in nature above T\_N, although a small antiferromagnetic contribution is also evident. Additionally, in samples x = 0.1 and 0.3 with CE-type antiferromagnetic ordering, superlattice diffuse reflections are observed indicating correlations between magnetic polarons. On lowering temperature below T\_N the diffuse scattering corresponding to ferromagnetic correlations is suppressed and the long range ordered antiferromagnetic state is established. However, the short range ordered correlations indicated by enhanced spin flip scattering at low Q coexist with long range ordered state down to 3K. In x = 0.4 sample with A-type antiferromagnetic ordering, superlattice diffuse reflections are absent. Additionally, in comparison to x = 0.1 and 0.3 sample, the enhanced spin flip scattering at low Q is reduced at 310K, and as temperature is reduced below 200K, it becomes negligibly low. The variation of radial correlation function, g(r) with temperature indicates rapid suppression of ferromagnetic correlations at the first nearest neighbor on approaching TN. Sample x = 0.4 exhibits growth of ferromagnetic phase at intermediate temperatures (~ 200K). This has been further explored using SANS and neutron depolarization techniques.Comment: 13 pages, 12 figures, To appear in Physical Review

    Composite fermions in periodic and random antidot lattices

    Get PDF
    The longitudinal and Hall magnetoresistance of random and periodic arrays of artificial scatterers, imposed on a high-mobility two-dimensional electron gas, were investigated in the vicinity of Landau level filling factor ν=1/2. In periodic arrays, commensurability effects between the period of the antidot array and the cyclotron radius of composite fermions are observed. In addition, the Hall resistance shows a deviation from the anticipated linear dependence, reminiscent of quenching around zero magnetic field. Both effects are absent for random antidot lattices. The relative amplitude of the geometric resonances for opposite signs of the effective magnetic field and its dependence on illumination illustrate enhanced soft wall effects for composite fermions

    Chemical enrichment of the complex hot ISM of the Antennae Galaxies: II. Physical properties of the hot gas and supernova feedback

    Full text link
    We investigate the physical properties of the interstellar medium (ISM) in the merging pair of galaxies known as The Antennae (NGC 4038/39), using the deep coadded ~411 ks Chandra ACIS-S data set. The method of analysis and some of the main results from the spectral analysis, such as metal abundances and their variations from ~0.2 to ~20-30 times solar, are described in Paper I (Baldi et al. submitted). In the present paper we investigate in detail the physics of the hot emitting gas, deriving measures for the hot-gas mass (~10^ M_sun), cooling times (10^7-10^8 yr), and pressure (3.5x10^-11-2.8x10^-10 dyne cm^-2). At least in one of the two nuclei (NGC 4038) the hot-gas pressure is significantly higher than the CO pressure, implying that shock waves may be driven into the CO clouds. Comparison of the metal abundances with the average stellar yields predicted by theoretical models of SN explosions points to SNe of Type II as the main contributors of metals to the hot ISM. There is no evidence of any correlation between radio-optical star-formation indicators and the measured metal abundances. Although due to uncertainties in the average gas density we cannot exclude that mixing may have played an important role, the short time required to produce the observed metal masses (<=2 Myr) suggests that the correlations are unlikely to have been destroyed by efficient mixing. More likely, a significant fraction of SN II ejecta may be in a cool phase, in grains, or escaping in hot winds. In each case, any such fraction of the ejecta would remain undetectable with soft X-ray observations.Comment: 29 pages, 6 figures, accepted by the Astrophysical Journa
    • …
    corecore