40 research outputs found

    Detecting and characterizing lateral phishing at scale

    Get PDF
    We present the first large-scale characterization of lateral phishing attacks, based on a dataset of 113 million employee-sent emails from 92 enterprise organizations. In a lateral phishing attack, adversaries leverage a compromised enterprise account to send phishing emails to other users, benefit-ting from both the implicit trust and the information in the hijacked user's account. We develop a classifier that finds hundreds of real-world lateral phishing emails, while generating under four false positives per every one-million employee-sent emails. Drawing on the attacks we detect, as well as a corpus of user-reported incidents, we quantify the scale of lateral phishing, identify several thematic content and recipient targeting strategies that attackers follow, illuminate two types of sophisticated behaviors that attackers exhibit, and estimate the success rate of these attacks. Collectively, these results expand our mental models of the 'enterprise attacker' and shed light on the current state of enterprise phishing attacks

    Einleitung: Die erste Schwalbe

    Get PDF

    Tau filaments from multiple cases of sporadic and inherited Alzheimer's disease adopt a common fold.

    Get PDF
    The ordered assembly of tau protein into abnormal filaments is a defining characteristic of Alzheimer's disease (AD) and other neurodegenerative disorders. It is not known if the structures of tau filaments vary within, or between, the brains of individuals with AD. We used a combination of electron cryo-microscopy (cryo-EM) and immuno-gold negative-stain electron microscopy (immuno-EM) to determine the structures of paired helical filaments (PHFs) and straight filaments (SFs) from the frontal cortex of 17 cases of AD (15 sporadic and 2 inherited) and 2 cases of atypical AD (posterior cortical atrophy). The high-resolution structures of PHFs and SFs from the frontal cortex of 3 cases of AD, 2 sporadic and 1 inherited, were determined by cryo-EM. We also used immuno-EM to study the PHFs and SFs from a number of cortical and subcortical brain regions. PHFs outnumbered SFs in all AD cases. By cryo-EM, PHFs and SFs were made of two C-shaped protofilaments with a combined cross-β/β-helix structure, as described previously for one case of AD. The higher resolution structures obtained here showed two additional amino acids at each end of the protofilament. The immuno-EM findings, which indicated the presence of repeats 3 and 4, but not of the N-terminal regions of repeats 1 and 2, of tau in the filament cores of all AD cases, were consistent with the cryo-EM results. These findings show that there is no significant variation in tau filament structures between individuals with AD. This knowledge will be crucial for understanding the mechanisms that underlie tau filament formation and for developing novel diagnostics and therapies

    Cryo-EM structures of amyloid-beta filaments with the Arctic mutation (E22G) from human and mouse brains

    Get PDF
    The Arctic mutation, encoding E693G in the amyloid precursor protein (APP) gene [E22G in amyloid-β (Aβ)], causes dominantly inherited Alzheimer’s disease. Here, we report the high-resolution cryo-EM structures of Aβ filaments from the frontal cortex of a previously described case (AβPParc1) with the Arctic mutation. Most filaments consist of two pairs of non-identical protofilaments that comprise residues V12–V40 (human Arctic fold A) and E11–G37 (human Arctic fold B). They have a substructure (residues F20–G37) in common with the folds of type I and type II Aβ42. When compared to the structures of wild-type Aβ42 filaments, there are subtle conformational changes in the human Arctic folds, because of the lack of a side chain at G22, which may strengthen hydrogen bonding between mutant Aβ molecules and promote filament formation. A minority of Aβ42 filaments of type II was also present, as were tau paired helical filaments. In addition, we report the cryo-EM structures of Aβ filaments with the Arctic mutation from mouse knock-in line AppNL−G−F. Most filaments are made of two identical mutant protofilaments that extend from D1 to G37 (AppNL−G−F murine Arctic fold). In a minority of filaments, two dimeric folds pack against each other in an anti-parallel fashion. The AppNL−G−F murine Arctic fold differs from the human Arctic folds, but shares some substructure

    Cryo-EM structures of amyloid-β 42 filaments from human brains

    Get PDF
    Alzheimer’s disease is characterized by a loss of memory and other cognitive functions and the filamentous assembly of Aβ and tau in the brain. The assembly of Aβ peptides into filaments that end at residue 42 is a central event. Yang et al. used electron cryo–electron microscopy to determine the structures of Aβ42 filaments from human brain (see the Perspective by Willem and Fändrich). They identified two types of related S-shaped filaments, each consisting of two identical protofilaments. These structures will inform the development of better in vitro and animal models, inhibitors of Aβ42 assembly, and imaging agents with increased specificity and sensitivity. —SM

    Renate Bethge, Dietrich Bonhoeffer. Eine Skizze seines Lebens, Gütersloh, Gütersloher Verlagshaus, 2004

    No full text
    Arnold Matthieu. Renate Bethge, Dietrich Bonhoeffer. Eine Skizze seines Lebens, Gütersloh, Gütersloher Verlagshaus, 2004. In: Revue d'histoire et de philosophie religieuses, 86e année n°4, Octobre-Décembre 2006. p. 576
    corecore