322 research outputs found

    Non-gapped Fermi surfaces, quasiparticles and the anomalous temperature dependence of the near-EFE_F electronic states in the CMR oxide La22x_{2-2x}Sr1+2x_{1+2x}Mn2_2O7_7 with x=0.36x=0.36

    Full text link
    After years of research into colossal magnetoresistant (CMR) manganites using bulk techniques, there has been a recent upsurge in experiments directly probing the electronic states at or near the surface of the bilayer CMR materials La22x_{2-2x}Sr1+2x_{1+2x}Mn2_2O7_7 using angle-resolved photoemission or scanning probe microscopy. Here we report new, temperature dependent, angle resolved photoemission data from single crystals with a doping level of x=0.36x=0.36. The first important result is that there is no sign of a pseudogap in the charge channel of this material for temperatures below the Curie temperature TCT_C. The second important result concerns the temperature dependence of the electronic states. The temperature dependent changes in the Fermi surface spectra both at the zone face and zone diagonal regions in kk-space indicate that the coherent quasiparticle weight disappears for temperatures significantly above TCT_C, and that the kk-dependence of the T-induced changes in the spectra invalidate an interpretation of these data in terms of the superposition of a `universal' metallic spectrum and an insulating spectrum whose relative weight changes with temperature. In this sense, our data are not compatible with a phase separation scenario.Comment: 6 pages, 4 figure

    Geometric Universality of Currents

    Full text link
    We discuss a non-equilibrium statistical system on a graph or network. Identical particles are injected, interact with each other, traverse, and leave the graph in a stochastic manner described in terms of Poisson rates, possibly dependent on time and instantaneous occupation numbers at the nodes of the graph. We show that under the assumption of constancy of the relative rates, the system demonstrates a profound statistical symmetry, resulting in geometric universality of the statistics of the particle currents. This phenomenon applies broadly to many man-made and natural open stochastic systems, such as queuing of packages over the internet, transport of electrons and quasi-particles in mesoscopic systems, and chains of reactions in bio-chemical networks. We illustrate the utility of our general approach using two enabling examples from the two latter disciplines.Comment: 15 pages, 5 figure

    Forming Young Bulges within Existing Disks: Statistical Evidence for External Drivers

    Full text link
    Contrary to traditional models of galaxy formation, recent observations suggest that some bulges form within preexisting disk galaxies. Such late-epoch bulge formation within disks seems to be linked to disk gas inflow and central star formation, caused by either internal secular processes or galaxy mergers and interactions. We identify a population of galaxies likely to be experiencing active bulge growth within disks, using the criterion that the color within the half-light radius is bluer than the outer disk color. Such blue-centered galaxies make up >10% of star-forming disk galaxies within the Nearby Field Galaxy Survey, a broad survey designed to represent the natural diversity of the low-z galaxy population over a wide range of luminosities and environments. Blue-centered galaxies correlate at 99% confidence with morphological peculiarities suggestive of minor mergers and interactions. From this and other evidence, we argue that external drivers rather than internal secular processes probably account for the majority of blue-centered galaxies. We go on to discuss quantitative plausibility arguments indicating that blue-centered evolutionary phases may represent an important mode of bulge growth for most disk galaxies, leading to significant changes in bulge-to-disk ratio without destroying disks. If this view is correct, bulge growth within disks may be a natural consequence of the repeated galaxy mergers and interactions inherent in hierarchical galaxy formation.Comment: 18 pages including 12 figures, AJ, accepte

    Criticality and Condensation in a Non-Conserving Zero Range Process

    Get PDF
    The Zero-Range Process, in which particles hop between sites on a lattice under conserving dynamics, is a prototypical model for studying real-space condensation. Within this model the system is critical only at the transition point. Here we consider a non-conserving Zero-Range Process which is shown to exhibit generic critical phases which exist in a range of creation and annihilation parameters. The model also exhibits phases characterised by mesocondensates each of which contains a subextensive number of particles. A detailed phase diagram, delineating the various phases, is derived.Comment: 15 pages, 4 figure, published versi

    Zero-range processes with saturated condensation: the steady state and dynamics

    Full text link
    We study a class of zero-range processes in which the real-space condensation phenomenon does not occur and is replaced by a saturated condensation: that is, an extensive number of finite-size "condensates" in the steady state. We determine the conditions under which this occurs, and investigate the dynamics of relaxation to the steady state. We identify two stages: a rapid initial growth of condensates followed by a slow process of activated evaporation and condensation. We analyze these nonequilibrium dynamics with a combination of meanfield approximations, first-passage time calculations and a fluctuation-dissipation type approach.Comment: 21 pages, 12 figure

    A feasibility study on the use of equine chondrogenic induced mesenchymal stem cells as a treatment for natural occurring osteoarthritis in dogs

    Get PDF
    Conventional treatments of osteoarthritis (OA) reduce pain and the inflammatory response but do not repair the damaged cartilage. Xenogeneic peripheral blood-derived equine chondrogenically induced mesenchymal stem cells (ciMSC) could thus provide an interesting alternative. Six client-owned dogs with confirmed elbow OA were subjected to a baseline orthopedic examination, pressure plate analysis, general clinical examination, hematological analysis, synovial fluid sampling, and radiographic examination, and their owners completed two surveys. After all examinations, a 0.9% saline solution (placebo control product=CP) was administered intra-articularly. After 6 weeks, all examinations were repeated, owners again completed two surveys, and equine ciMSCs were administered in the same joint. After another 6 weeks, dogs were returned for a final follow-up. No serious adverse events or suspected adverse drug reactions were present during this study. No significant differences in blood analysis were noted between the CP and ciMSC treatment. Two adverse events were observed, both in the same dog, one after CP treatment and one after ciMSC treatment. The owner surveys revealed significantly less pain and lameness after ciMSC treatment compared to after CP treatment. There was no significant difference in the orthopedic examination parameters, the radiographic examination, synovial fluid sampling, and pressure plate analysis between CP treatment and ciMSC treatment. A single intra-articular administration of equine ciMSCs proved to be a well-tolerated treatment, which reduced lameness and pain according to the owner's evaluations compared to a placebo treatment

    Double photo-ionization of He near a polarizable surface

    Full text link
    We calculate the differential cross-section of the direct double photo-ionization of He physisorbed on a polarizable surface. By including the influence of the surface potential in the correlated two-electron final state wavefunction, we show that the differential cross-section carries detailed information on the electronic correlations at the surface. In particular, photo-emission along opposite directions, which is prohibited in the free space, is allowed if the surface potential is long-ranged.Comment: To appear in Phys. Rev. B - Rapid Comm. - 4 pages, 2 PostScript figures embedde

    First detection of a minor merger a z~0.6

    Full text link
    Numerical simulations predict that minor mergers are an important channel for the mass assembly of galaxies. However, minor mergers are relatively difficult to detect using imaging, especially at high redshift. While such events are much less violent than major mergers, they can nevertheless leave several features on the kinematical structures of remnant galaxies which could be detected using 3D spectroscopy. We present the first direct detection of a minor merger in a z~0.6 galaxy. Such events could indeed be good candidates to explain the kinematics of perturbed rotating disks observed with GIRAFFE at z~0.6. We present photometric and kinematical evidence of such an event in a combined analysis of three-band HST/ACS imaging and VLT/GIRAFFE 2D-kinematics. Using these data, we are able to demonstrate that a minor merger of a relatively small satellite (mass ratio ~1:18) is occurring in this galaxy. We also derive a total SFR ~21Mo/yr. Minor mergers could be one of the physical processes explaining the kinematics of perturbed rotating disks, which represent ~25% of emission line intermediate mass galaxies at z~0.6. 3D spectroscopy appears to be a very good tool to identify minor mergers in distant (and local) galaxies.Comment: 4 pages, 3 figures; A&A letter, accepte

    Condensation in randomly perturbed zero-range processes

    Full text link
    The zero-range process is a stochastic interacting particle system that exhibits a condensation transition under certain conditions on the dynamics. It has recently been found that a small perturbation of a generic class of jump rates leads to a drastic change of the phase diagram and prevents condensation in an extended parameter range. We complement this study with rigorous results on a finite critical density and quenched free energy in the thermodynamic limit, as well as quantitative heuristic results for small and large noise which are supported by detailed simulation data. While our new results support the initial findings, they also shed new light on the actual (limited) relevance in large finite systems, which we discuss via fundamental diagrams obtained from exact numerics for finite systems.Comment: 18 pages, 6 figure
    corecore