225 research outputs found

    CD4+ T cell–independent vaccination against Pneumocystis carinii in mice

    Get PDF
    Host defenses are profoundly compromised in HIV-infected hosts due to progressive depletion of CD4(+) T lymphocytes. Moreover, deficient CD4(+) T lymphocytes impair vaccination approaches to prevent opportunistic infection. Therefore, we investigated a CD4(+) T cell–independent vaccine approach to a prototypic AIDS-defining infection, Pneumocystis carinii (PC) pneumonia. Here, we demonstrate that bone marrow–derived dendritic cells (DCs) expressing the murine CD40 ligand, when pulsed ex vivo by PC antigen, elicited significant titers of anti-PC IgG in CD4-deficient mice. Vaccinated animals demonstrated significant protection from PC infection, and this protection was the result of an effective humoral response, since adoptive transfer of CD4-depleted splenocytes or serum conferred this protection to CD4-deficient mice. Western blot analysis of PC antigen revealed that DC-vaccinated, CD4-deficient mice predominantly reacted to a 55-kDa PC antigen. These studies show promise for advances in CD4-independent vaccination against HIV-related pathogens

    Ecological genomics: steps towards unraveling the genetic basis of inducible defenses in Daphnia

    Get PDF
    Little is known about the genetic mechanisms underlying inducible defenses. Recently, the genome of Daphnia pulex, a model organism for defense studies, has been sequenced. Building on the genome information, recent preliminary studies in BMC Developmental Biology and BMC Molecular Biology have assessed gene response profiles in Daphnia under predation pressure. We review the significance of the findings and highlight future research perspectives

    Methodological considerations in the analysis of fecal glucocorticoid metabolites in tufted capuchins (Cebus apella)

    Get PDF
    Analysis of fecal glucocorticoid (GC) metabolites has recently become the standard method to monitor adrenocortical activity in primates noninvasively. However, given variation in the production, metabolism, and excretion of GCs across species and even between sexes, there are no standard methods that are universally applicable. In particular, it is important to validate assays intended to measure GC production, test extraction and storage procedures, and consider the time course of GC metabolite excretion relative to the production and circulation of the native hormones. This study examines these four methodological aspects of fecal GC metabolite analysis in tufted capuchins (Cebus apella). Specifically, we conducted an adrenocorticotrophic hormone (ACTH) challenge on one male and one female capuchin to test the validity of four GC enzyme immunoassays (EIAs) and document the time course characterizing GC me- tabolite excretion in this species. In addition, we compare a common field-friendly technique for extracting fecal GC metabolites to an established laboratory extraction methodology and test for effects of storing “field extracts” for up to 1 yr. Results suggest that a corticosterone EIA is most sensitive to changes in GC production, provides reliable measures when extracted according to the field method, and measures GC metabolites which remain highly stable after even 12 mo of storage. Further, the time course of GC metabolite excretion is shorter than that described yet for any primate taxa. These results provide guidelines for studies of GCs in tufted capuchins, and underscore the importance of validating methods for fecal hormone analysis for each species of interest

    Diffusion in liquid mixtures

    Get PDF
    The understanding of transport and mixing in fluids in the presence and in the absence of external fields and reactions represents a challenging topic of strategic relevance for space exploration. Indeed, mixing and transport of components in a fluid are especially important during long-term space missions where fuels, food and other materials, needed for the sustainability of long space travels, must be processed under microgravity conditions. So far, the processes of transport and mixing have been investigated mainly at the macroscopic and microscopic scale. Their investigation at the mesoscopic scale is becoming increasingly important for the understanding of mass transfer in confined systems, such as porous media, biological systems and microfluidic systems. Microgravity conditions will provide the opportunity to analyze the effect of external fields and reactions on optimizing mixing and transport in the absence of the convective flows induced by buoyancy on Earth. This would be of great practical applicative relevance to handle complex fluids under microgravity conditions for the processing of materials in space

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    Mesozoic fossils (>145 Mya) suggest the antiquity of the subgenera of Daphnia and their coevolution with chaoborid predators

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The timescale of the origins of <it>Daphnia </it>O. F. Mueller (Crustacea: Cladocera) remains controversial. The origin of the two main subgenera has been associated with the breakup of the supercontinent Pangaea. This vicariance hypothesis is supported by reciprocal monophyly, present day associations with the former Gondwanaland and Laurasia regions, and mitochondrial DNA divergence estimates. However, previous multilocus nuclear DNA sequence divergence estimates at < 10 Million years are inconsistent with the breakup of Pangaea. We examined new and existing cladoceran fossils from a Mesozoic Mongolian site, in hopes of gaining insights into the timescale of the evolution of <it>Daphnia</it>.</p> <p>Results</p> <p>We describe new fossils of ephippia from the Khotont site in Mongolia associated with the Jurassic-Cretaceous boundary (about 145 MYA) that are morphologically similar to several modern genera of the family Daphniidae, including the two major subgenera of <it>Daphnia</it>, i.e., <it>Daphnia </it>s. str. and <it>Ctenodaphnia</it>. The daphniid fossils co-occurred with fossils of the predaceous phantom midge (Chaoboridae).</p> <p>Conclusions</p> <p>Our findings indicate that the main subgenera of <it>Daphnia </it>are likely much older than previously known from fossils (at least 100 MY older) or from nuclear DNA estimates of divergence. The results showing co-occurrence of the main subgenera far from the presumed Laurasia/Gondwanaland dispersal barrier shortly after formation suggests that vicariance from the breakup of Pangaea is an unlikely explanation for the origin of the main subgenera. The fossil impressions also reveal that the coevolution of a dipteran predator (Chaoboridae) with the subgenus <it>Daphnia </it>is much older than previously known -- since the Mesozoic.</p

    Bleomycin and IL-1ÎČ–mediated pulmonary fibrosis is IL-17A dependent

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a destructive inflammatory disease with limited therapeutic options. To better understand the inflammatory responses that precede and concur with collagen deposition, we used three models of pulmonary fibrosis and identify a critical mechanistic role for IL-17A. After exposure to bleomycin (BLM), but not Schistosoma mansoni eggs, IL-17A produced by CD4+ and γΎ+ T cells induced significant neutrophilia and pulmonary fibrosis. Studies conducted with C57BL/6 il17a−/− mice confirmed an essential role for IL-17A. Mechanistically, using ifnγ−/−, il10−/−, il10−/−il12p40−/−, and il10−/−il17a−/− mice and TGF-ÎČ blockade, we demonstrate that IL-17A–driven fibrosis is suppressed by IL-10 and facilitated by IFN-Îł and IL-12/23p40. BLM-induced IL-17A production was also TGF-ÎČ dependent, and recombinant IL-17A–mediated fibrosis required TGF-ÎČ, suggesting cooperative roles for IL-17A and TGF-ÎČ in the development of fibrosis. Finally, we show that fibrosis induced by IL-1ÎČ, which mimics BLM-induced fibrosis, is also highly dependent on IL-17A. IL-17A and IL-1ÎČ were also increased in the bronchoalveolar lavage fluid of patients with IPF. Together, these studies identify a critical role for IL-17A in fibrosis, illustrating the potential utility of targeting IL-17A in the treatment of drug and inflammation-induced fibrosis
    • 

    corecore