54 research outputs found
From Molecules to Ecosystems: Topics, Challenges, and Players in Environmental Chemistry
This article is meant to be appetizer and introduction to this special issue of CHIMIA on 'Chemistry at EAWAG'. Two major topics presently challenge environmental chemistry, not only at EAWAG: The human impact on global and regional biogeochemical cycles and the pollution of the environment
by anthropogenic chemicals. In order to tackle the various tasks associated with these problems, environmental chemists have to build bridges between the molecular scope of laboratory experiments and the systems approach of comprehensive field and modeling studies. This requires the ability
to collaborate with other disciplines and to combine their knowledge with a profound understanding of chemistry. Some consequences of these requirements for research and education in environmental chemistry are also addressed in this article
Reductive Transformations of Anthropogenic Chemicals in Natural and Technical Systems
Reductive transformation reactions of chemical pollutants (e.g., polyhalogenated hydrocarbons, aromatic azo and nitro compounds, chromium(VI) species) in the environment are important both from an ecotoxicological and from an environmental technology point of view. Using well-defined
model reactors as well as more complex 'real world' systems, several groups at EAWAG are trying to unravel compound- and system-specific factors that control the reduction of a variety of anthropogenic chemicals under different conditions in the environment. The examples presented in this
article include the reduction of nitroaromatic compounds under iron- and sulfate-reducing conditions, the reductive dehalogenation of chlorinated ethenes by cob(I)alamin and by a bacterium that uses such compounds as terminal electron acceptors, and the reduction of chromium(VI) by various
reduced iron species. The link between microbial and abiotic (chemical) processes involved in reductive transformations of pollutants is emphasized. The major goal of this article is to illustrate the approaches taken to elucidate the mechanisms and kinetics of environmentally relevant reduction
reactions of pollutants, and to discuss how the results of such studies can be used 1) to gain insight into what is actually happening in the environment, and 2) to develop methods for the treatment of chemical wastes or contaminated sites
Contaminated environments in the subsurface and bioremediation: organic contaminants
Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low biomass production and good electron acceptor availability, and they are sometimes the only possible solution. This review will focus on three important groups of environmental organic contaminants: hydrocarbons, chlorinated and nitroaromatic compounds. Whereas hydrocarbons are oxidized and completely mineralized under anaerobic conditions in the presence of electron acceptors such as nitrate, iron, sulfate and carbon dioxide, chlorinated and nitroaromatic compounds are reductively transformed. For the aerobic often persistent polychlorinated compounds, reductive dechlorination leads to harmless products or to compounds that are aerobically degradable. The nitroaromatic compounds are first reductively transformed to the corresponding amines and can subsequently be bound to the humic fraction in an aerobic process. Such new findings and developments give hope that in the near future contaminated aquifers can efficiently be remediated, a prerequisite for a sustainable use of the precious subsurface drinking water resource
Environmental Exposure to Estrogenic and other Myco- and Phytotoxins
Zearalenone (ZON) is known as a very potent, naturally occurring estrogenic mycotoxin. It is one of the most prevalent mycotoxin produced as a secondary metabolite by Fusarium species growing on cereals such as wheat and corn. It has been studied extensively in food and feed
products for decades but only rarely and somewhat by chance in the environment. We therefore elucidated its agro-environmental fate and behavior by conducting a series of field studies and monitoring campaigns. Specifically, ZON was investigated in plants, soils and drainage waters from wheat
and corn fields artificially infected with Fusarium graminearum. In addition, manure, sewage sludge and surface waters were analyzed for ZON. Three main input pathways of ZON onto soil could be identified: i) wash-off from Fusarium-infected plants (in the order of 100 mg/ha),
ii) plant debris remaining on the soil after harvest (up to few g/ha), and iii) manure application (in the order of 100 mg/ha). Our results show that these input sources altogether caused the presence of several g/ha of ZON in topsoil. Compared to this, ZON emission by drainage water from
Fusarium-infected fields was generally low, with maximum concentrations of 35 ng/l and total amounts of a few mg/ha. Due to dilution, ZON concentrations dropped below environmental relevance in larger surface water bodies. However in small catchments dominated by runoff from agricultural
land, ZON might substantially contribute to the estrogenicity of such waters. Apart from ZON, other natural toxins monitored in this study, such as the mycotoxin deoxynivalenol or the estrogenic phytoestrogen formononetin, emitted to and occurred in surface waters at considerably higher amounts.
To date their ecotoxicological effects are largely unknown
Using nitrogen isotope fractionation to assess the oxidation of substituted anilines by manganese oxide
We explored the N isotope fractionation associated with the oxidation of substituted primary aromatic amines, which are often the position of initial attack in transformation processes of environmental contaminants. Apparent (15)N-kinetic isotope effects, AKIE(N), were determined for the oxidation of various substituted anilines in suspensions of manganese oxide (MnO(2)) and compared to reference experiments in homogeneous solutions and at electrode surfaces, as well as to density functional theory calculations of intrinsic KIE(N)for electron and hydrogen atom transfer reactions. Owing to the partial aromatic imine formation after one-electron oxidation and corresponding increase in C-N bond strength, AKIE(N)-values were inverse, substituent-dependent, and confined to the range between 0.992 and 0.999 in agreement with theory. However, AKIE(N)-values became normal once the fraction of cationic species prevailed owing to (15)N-equilibrium isotope effects, EIE(N), of 1.02 associated with N atom deprotonation. The observable AKIE(N)-values are substantially modulated by the acid/base pre-equilibria of the substituted anilines and isotope fractionation may even vanish under conditions where normal EIE(N) and inverse AKIE(N) cancel each other out. The pH-dependent trends of the AKIE(N)-values provide a new line of evidence for the identification of contaminant degradation processes via oxidation of primary aromatic amino groups
Assessing Ten Years of Inter- and Trans-disciplinary Research, Education, and Outreach
While there is a growing consensus about the role of academia in tackling the grand challenges of sustainability, the current incentive and reward system does not yet provide the right environment. Inter- and transdisciplinary research centers can bring about the needed cultural change.
Research centers have emerged as organizational structures to meet the manifold expectations raised towards sustainability science, a field characterized by high levels of inter- and transdisciplinarity. In this article, we assess the impact of the Competence Center Environment and Sustainability (CCES) of the ETH Domain. Encompassing more than 800 participants from six research institutions in Switzerland, the research center has been in operation for ten years (2006 to 2016). Focusing on its three areas of activity ‐ research, education, and outreach ‐ we analyze which decisions have influenced the development and legacy of CCES. We formulate five recommendations, which could prove useful for the future design and evaluation of comparable enterprises. Finally, we conclude that the academic incentive and reward system has to open up for inter- and transdisciplinarity. Research centers like CCES can facilitate this cultural change by providing the necessary academic environment and forming a new generation of researchers in key fields.ISSN:0940-555
- …