627 research outputs found

    Cytomolecular identification of individual wheat-wheat chromosome arm associations in wheat-rye hybrids

    Get PDF
    Chromosome pairing in the meiotic metaphase I of wheatrye hybrids has been characterized by sequential genomic and fluorescent in situ hybridization allowing not only the discrimination of wheat and rye chromosomes, but also the identification of the individual wheat and rye chromosome arms involved in the chromosome associations. The majority of associations (93.8%) were observed between the wheat chromosomes. The largest number of wheat-wheat chromosome associations (53%) was detected between the A and D genomes, while the frequency of B-D and A-B associations was significantly lower (32 and 8%, respectively). Among the A-D chromosome associations, pairing between the 3AL and 3DL arms was observed with the highest frequency, while the most frequent of all the chromosome associations (0.113/ cell) was found to be the 3DS-3BS. Differences in the pairing frequency of the individual chromosome arms of wheat-rye hybrids have been discussed in relation to the homoeologous relationships between the constituent genomes of hexaploid wheat

    Wheat-barley hybridization – the last forty years

    Get PDF
    Abstract Several useful alien gene transfers have been reported from related species into wheat (Triticum aestivum), but very few publications have dealt with the development of wheat/barley (Hordeum vulgare) introgression lines. An overview is given here of wheat 9 barley hybridization over the last forty years, including the development of wheat 9 barley hybrids, and of addition and translocation lines with various barley cultivars. A short summary is also given of the wheat 9 barley hybrids produced with other Hordeum species. The meiotic pairing behaviour of wheat 9 barley hybrids is presented, with special regard to the detection of wheat– barley homoeologous pairing using the molecular cytogenetic technique GISH. The effect of in vitro multiplication on the genome composition of intergeneric hybrids is discussed, and the production and characterization of the latest wheat/barley translocation lines are presented. An overview of the agronomical traits (b-glucan content, earliness, salt tolerance, sprouting resistance, etc.) of the newly developed introgression lines is given. The exploitation and possible use of wheat/barley introgression lines for the most up-to-date molecular genetic studies (transcriptome analysis, sequencing of flow-sorted chromosomes) are also discussed

    Preparation of Barley Pollen Mother Cells for Confocal and Super Resolution Microscopy

    Get PDF
    Recombination (crossover) drives the release of genetic diversity in plant breeding programs. However, in barley, recombination is skewed toward the telomeric ends of its seven chromosomes, restricting the re-assortment of about 30% of the genes located in the centromeric regions of its large 5.1 Gb genome. A better understanding of meiosis and recombination could provide ways of modulating crossover distribution and frequency in barley as well as in other grasses, including wheat. While most research on recombination has been carried out in the model plant Arabidopsis thaliana, recent studies in barley (Hordeum Vulgare) have provided new insights into the control of crossing over in large genome species. A major achievement in these studies has been the use of cytological procedures to follow meiotic events. This protocol provides detailed practical steps required to perform immunostaining of barley meiocytes (pollen mother cells) for confocal or structured illumination microscopy.</p

    Characterisation of Perennial Ryegrass Parental Inbred Lines for Generating Recombinant Inbred Lines for Fine Mapping and Gene Cloning

    Get PDF
    Intermated recombinant inbred lines (IRIs) are a powerful tool for fine mapping and cloning of genes. Such population structures have been particularly helpful for cloning of genes in the model genetic plant Arabidopsis thaliana. IRIs or recombinant inbred lines (RILs) would be valuable for perennial ryegrass (Lolium perenne), but its allogamous character means that the construction of RILs is a difficult task. The international Lolium community would benefit from the development of such lines. The aims of the projects are to characterise the parental lines and initial generations at the (1) phenotypic, (2) molecular and (3) molecular cytogenetic level

    Molecular cytogenetics (FISH, GISH) of Coccinia grandis: A ca. 3 myr-old species of Cucurbitaceae with the largest Y/autosome divergence in flowering plants

    Get PDF
    The independent evolution of heteromorphic sex chromosomes in 19 species from 4 families of flowering plants permits studying X/Y divergence after the initial recombination suppression. Here, we document autosome/Y divergence in the tropical Cucurbitaceae Coccinia grandis, which is ca. 3 myr old. Karyotyping and C-value measurements show that the C. grandis Y chromosome has twice the size of any of the other chromosomes, with a male/female C-value difference of 0.094 pg or 10% of the total genome. FISH staining revealed 5S and 45S rDNA sites on autosomes but not on the Y chromosome, making it unlikely that rDNA contributed to the elongation of the Y chromosome; recent end-to-end fusion also seems unlikely given the lack of interstitial telomeric signals. GISH with different concentrations of female blocking DNA detected a possible pseudo-autosomal region on the Y chromosome, and C-banding suggests that the entire Y chromosome in C. grandis is heterochromatic. During meiosis, there is an end-to-end connection between the X and the Y chromosome, but the X does not otherwise differ from the remaining chromosomes. These findings and a review of plants with heteromorphic sex chromosomes reveal no relationship between species age and degree of sex chromosome dimorphism. Its relatively small genome size (0.943 pg/2C in males), large Y chromosome, and phylogenetic proximity to the fully sequenced Cucumis sativus make C. grandis a promising model to study sex chromosome evolution. Copyright © 2012 S. Karger AG, Base

    Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance

    Get PDF
    Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a costeffective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chromatin in four genetically diverse populations of wheat (Triticum aestivum) lines incorporating chromosome segments from Thinopyrum intermedium and Secale cereale (rye). Out of 20 experimental lines, 10 carried Th. intermedium chromatin as T4DL*4Ai#2S translocations, while, unexpectedly, 7 lines were positive for alien chromatin (Th. intermedium or rye) on chromosome 1B. The newly described rye 1RS chromatin, transmitted from early in the pedigree, was associated with enhanced WSMV resistance. Under field conditions, the 1RS chromatin alone showed some resistance, while together with the Th. intermedium 4Ai#2S offered superior resistance to that demonstrated by the known resistant cultivar Mace. Most alien wheat lines carry whole chromosome arms, and it is notable that these lines showed intra-arm recombination within the 1BS arm. The translocation breakpoints between 1BS and alien chromatin fell in three categories: (i) at or near to the centromere, (ii) intercalary between markers UL-Thin5 and Xgwm1130 and (iii) towards the telomere between Xgwm0911 and Xbarc194. Labelled genomic Th. intermedium DNA hybridised to the rye 1RS chromatin under high stringency conditions, indicating the presence of shared tandem repeats among the cereals. The novel small alien fragments may explain the difficulty in developing well-adapted lines carrying Wsm1 despite improved tolerance to the virus. The results will facilitate directed chromosome engineering producing agronomically desirable WSMV-resistant germplasm

    Diverged subpopulations in tropical Urochloa (Brachiaria) forage species indicate a role for facultative apomixis and varying ploidy in their population structure and evolution

    Get PDF
    Abstract Background Urochloa (syn. Brachiaria) is a genus of tropical grasses sown as forage feedstock, particularly in marginal soils. Here we aimed to clarify the genetic diversity and population structure in Urochloa species to understand better how population evolution relates to ploidy level and occurrence of apomictic reproduction. Methods We explored the genetic diversity of 111 accessions from the five Urochloa species used to develop commercial cultivars. These accessions were conserved from wild materials collected at their centre of origin in Africa, and they tentatively represent the complete Urochloa gene pool used in breeding programmes. We used RNA-sequencing to generate 1.1 million single nucleotide polymorphism loci. We employed genetic admixture, principal component and phylogenetic analyses to define subpopulations. Results We observed three highly differentiated subpopulations in U. brizantha, which were unrelated to ploidy: one intermixed with U. decumbens, and two diverged from the former and the other species in the complex. We also observed two subpopulations in U. humidicola, unrelated to ploidy; one subpopulation had fewer accessions but included the only characterized sexual accession in the species. Our results also supported a division of U. decumbens between diploids and polyploids, and no subpopulations within U. ruziziensis and U. maxima. Conclusions Polyploid U. decumbens are more closely related to polyploid U. brizantha than to diploid U. decumbens, which supports the divergence of both polyploid groups from a common tetraploid ancestor and provides evidence for the hybridization barrier of ploidy. The three differentiated subpopulations of apomictic polyploid U. brizantha accessions constitute diverged ecotypes, which can probably be utilized in hybrid breeding. Subpopulations were not observed in non-apomictic U. ruziziensis. Sexual Urochloa polyploids were not found (U. brizantha, U. decumbens) or were limited to small subpopulations (U. humidicola). The subpopulation structure observed in the Urochloa sexual–apomictic multiploidy complexes supports geographical parthenogenesis, where the polyploid genotypes exploit the evolutionary advantage of apomixis, i.e. uniparental reproduction and clonality, to occupy extensive geographical areas

    Complex polyploid and hybrid species in an apomictic and sexual tropical forage grass group: genomic composition and evolution in Urochloa (Brachiaria) species

    Get PDF
    Background and Aims Diploid and polyploid Urochloa (including Brachiaria, Panicum and Megathyrsus species) C-4 tropical forage grasses originating from Africa are important for food security and the environment, often being planted in marginal lands worldwide. We aimed to characterize the nature of their genomes, the repetitive DNA and the genome composition of polyploids, leading to a model of the evolutionary pathways within the group including many apomictic species. Methods Some 362 forage grass accessions from international germplasm collections were studied, and ploidy was determined using an optimized flow cytometry method. Whole-genome survey sequencing and molecular cytogenetic analysis were used to identify chromosomes and genomes in Urochloa accessions belonging to the 'brizantha' and 'humidicola' agamic complexes and U. maxima. Key Results Genome structures are complex and variable, with multiple ploidies and genome compositions within the species, and no clear geographical patterns. Sequence analysis of nine diploid and polyploid accessions enabled identification of abundant genome-specific repetitive DNA motifs. In situ hybridization with a combination of repetitive DNA and genomic DNA probes identified evolutionary divergence and allowed us to discriminate the different genomes present in polyploids. Conclusions We suggest a new coherent nomenclature for the genomes present. We develop a model of evolution at the whole-genome level in diploid and polyploid accessions showing processes of grass evolution. We support the retention of narrow species concepts for Urochloa brizantha, U. decumbens and U. ruziziensis, and do not consider diploids and polyploids of single species as cytotypes. The results and model will be valuable in making rational choices of parents for new hybrids, assist in use of the germplasm for breeding and selection of Urochloa with improved sustainability and agronomic potential, and assist in measuring and conserving biodiversity in grasslands

    Epigenetic marks in the mature pollen of Quercus suber L. (Fagaceae)

    Get PDF
    We have analysed the distribution of epigenetic marks for histone modifications at lysine residues H3 and H4, and DNA methylation, in the nuclei of mature pollen cells of the Angiosperm tree Quercus suber; a monoecious wind pollinated species with a protandrous system, and a long post-pollination period. The ultrasonic treatment developed for the isolation of pollen nuclei proved to be a fast and reliable method, preventing the interference of cell wall autofluorescence in the in situ immunolabelling assays. In contrast with previous studies on herbaceous species with short progamic phases, our results are consistent with a high level of silent (5-mC and H3K9me2) epigenetic marks on chromatin of the generative nucleus, and the prevalence of active marks (H3K9me3 and H4Kac) in the vegetative nucleus. The findings are discussed in terms of the pollination/fertilization timing strategy adopted by this plant specie
    corecore