24,847 research outputs found
Domain walls and chaos in the disordered SOS model
Domain walls, optimal droplets and disorder chaos at zero temperature are
studied numerically for the solid-on-solid model on a random substrate. It is
shown that the ensemble of random curves represented by the domain walls obeys
Schramm's left passage formula with kappa=4 whereas their fractal dimension is
d_s=1.25, and therefore is NOT described by "Stochastic-Loewner-Evolution"
(SLE). Optimal droplets with a lateral size between L and 2L have the same
fractal dimension as domain walls but an energy that saturates at a value of
order O(1) for L->infinity such that arbitrarily large excitations exist which
cost only a small amount of energy. Finally it is demonstrated that the
sensitivity of the ground state to small changes of order delta in the disorder
is subtle: beyond a cross-over length scale L_delta ~ 1/delta the correlations
of the perturbed ground state with the unperturbed ground state, rescaled by
the roughness, are suppressed and approach zero logarithmically.Comment: 23 pages, 11 figure
Towards testing interacting cosmology by distant type Ia supernovae
We investigate the possibility of testing cosmological models with
interaction between matter and energy sector. We assume the standard FRW model
while the so called energy conservation condition is interpreted locally in
terms of energy transfer. We analyze two forms of dark energy sectors: the
cosmological constant and phantom field. We find a simple exact solution of the
models in which energy transfer is described by a Cardassian like term in the
relation of , where is Hubble's function and is redshift. The
considered models have two additional parameters
(apart the parameters of the CDM model) which can be tested using SNIa
data. In the estimation of the model parameters Riess et al.'s sample is used.
We also confront the quality of statistical fits for both the CDM
model and the interacting models with the help of the Akaike and Bayesian
informative criteria. Our conclusion from standard best fit method is that the
interacting models explains the acceleration of the Universe better but they
give rise to a universe with high matter density. However, using the tools of
information criteria we find that the two new parameters play an insufficient
role in improving the fit to SNIa data and the standard CDM model is
still preferred. We conclude that high precision detection of high redshift
supernovae could supply data capable of justifying adoption of new parameters.Comment: RevTeX4, 14 pages, 7 figure
Image interpolation using Shearlet based iterative refinement
This paper proposes an image interpolation algorithm exploiting sparse
representation for natural images. It involves three main steps: (a) obtaining
an initial estimate of the high resolution image using linear methods like FIR
filtering, (b) promoting sparsity in a selected dictionary through iterative
thresholding, and (c) extracting high frequency information from the
approximation to refine the initial estimate. For the sparse modeling, a
shearlet dictionary is chosen to yield a multiscale directional representation.
The proposed algorithm is compared to several state-of-the-art methods to
assess its objective as well as subjective performance. Compared to the cubic
spline interpolation method, an average PSNR gain of around 0.8 dB is observed
over a dataset of 200 images
Parallel Implementation of the PHOENIX Generalized Stellar Atmosphere Program. II: Wavelength Parallelization
We describe an important addition to the parallel implementation of our
generalized NLTE stellar atmosphere and radiative transfer computer program
PHOENIX. In a previous paper in this series we described data and task parallel
algorithms we have developed for radiative transfer, spectral line opacity, and
NLTE opacity and rate calculations. These algorithms divided the work spatially
or by spectral lines, that is distributing the radial zones, individual
spectral lines, or characteristic rays among different processors and employ,
in addition task parallelism for logically independent functions (such as
atomic and molecular line opacities). For finite, monotonic velocity fields,
the radiative transfer equation is an initial value problem in wavelength, and
hence each wavelength point depends upon the previous one. However, for
sophisticated NLTE models of both static and moving atmospheres needed to
accurately describe, e.g., novae and supernovae, the number of wavelength
points is very large (200,000--300,000) and hence parallelization over
wavelength can lead both to considerable speedup in calculation time and the
ability to make use of the aggregate memory available on massively parallel
supercomputers. Here, we describe an implementation of a pipelined design for
the wavelength parallelization of PHOENIX, where the necessary data from the
processor working on a previous wavelength point is sent to the processor
working on the succeeding wavelength point as soon as it is known. Our
implementation uses a MIMD design based on a relatively small number of
standard MPI library calls and is fully portable between serial and parallel
computers.Comment: AAS-TeX, 15 pages, full text with figures available at
ftp://calvin.physast.uga.edu/pub/preprints/Wavelength-Parallel.ps.gz ApJ, in
pres
The hepta-ÎČ-glucoside elicitor-binding proteins from legumes represent a putative receptor family
The ability of legumes to recognize and respond to ÎČ-glucan elicitors by synthesizing phytoalexins is consistent with the existence of a membrane-bound ÎČ-glucan-binding site. Related proteins of approximately 75 kDa and the corresponding mRNAs were detected in various species of legumes which respond to beta-glucans. The cDNAs for the beta-glucan-binding proteins of bean and soybean were cloned. The deduced 75-kDa proteins are predominantly hydrophilic and constitute a unique class of glucan-binding proteins with no currently recognizable functional domains. Heterologous expression of the soybean beta-glucan-binding protein in tomato cells resulted in the generation of a high-affinity binding site for the elicitor-active hepta-ÎČ-glucoside conjugate (K-d = 4.5 nM). Ligand competition experiments with the recombinant binding sites demonstrated similar ligand specificities when compared with soybean. In both soybean and transgenic tomato, membrane-bound, active forms of the glucan-binding proteins coexist with immunologically detectable, soluble but inactive forms of the proteins. Reconstitution of a soluble protein fraction into lipid vesicles regained beta-glucoside-binding activity but with lower affinity (K-d = 130 nM). We conclude that the beta-glucan elicitor receptors of legumes are composed of the 75 kDa glucan-binding proteins as the critical components for ligand-recognition, and of an as yet unknown membrane anchor constituting the plasma membrane-associated receptor complex
Quantum -core conduction on the Bethe lattice
Classical and quantum conduction on a bond-diluted Bethe lattice is
considered. The bond dilution is subject to the constraint that every occupied
bond must have at least neighboring occupied bonds, i.e. -core
diluted. In the classical case, we find the onset of conduction for is
continuous, while for , the onset of conduction is discontinuous with the
geometric random first-order phase transition driving the conduction
transition. In the quantum case, treating each occupied bond as a random
scatterer, we find for that the random first-order phase transition in
the geometry also drives the onset of quantum conduction giving rise to a new
universality class of Anderson localization transitions.Comment: 12 pgs., 6 fig
Solomon Islands: Essential aspects of governance for Aquatic Agricultural Systems in Malaita Hub
In late 2012, a governance assessment was carried out as part of the diagnosis phase of rollout of the CGIAR Aquatic Agricultural Systems Program in Malaita Hub in Solomon Islands. The purpose of the assessment was to identify and provide a basic understanding of essential aspects of governance related to Aquatic Agricultural Systems in general, and more specifically as a case study in natural resource management. The underlying principles of the approach we have taken are drawn from an approach known as âCollaborating for Resilienceâ (CORE), which is based on bringing all key stakeholders into a process to ensure that multiple perspectives are represented (a listening phase), that local actors have opportunities to influence each otherâs understanding (a dialogue phase), and that ultimately commitments to action are built (a choice phase) that would not be possible through an outsiderâs analysis alone. This report begins to address governance from an AAS perspective, using input from AAS households and other networked stakeholders. We attempt to summarize governance issues that are found not only within the community but also, and especially, those that are beyond the local level, both of which may need to be addressed by the AAS program
Effect of Poisson ratio on cellular structure formation
Mechanically active cells in soft media act as force dipoles. The resulting
elastic interactions are long-ranged and favor the formation of strings. We
show analytically that due to screening, the effective interaction between
strings decays exponentially, with a decay length determined only by geometry.
Both for disordered and ordered arrangements of cells, we predict novel phase
transitions from paraelastic to ferroelastic and anti-ferroelastic phases as a
function of Poisson ratio.Comment: 4 pages, Revtex, 4 Postscript figures include
GEMINI: A Generic Multi-Modal Natural Interface Framework for Videogames
In recent years videogame companies have recognized the role of player
engagement as a major factor in user experience and enjoyment. This encouraged
a greater investment in new types of game controllers such as the WiiMote, Rock
Band instruments and the Kinect. However, the native software of these
controllers was not originally designed to be used in other game applications.
This work addresses this issue by building a middleware framework, which maps
body poses or voice commands to actions in any game. This not only warrants a
more natural and customized user-experience but it also defines an
interoperable virtual controller. In this version of the framework, body poses
and voice commands are respectively recognized through the Kinect's built-in
cameras and microphones. The acquired data is then translated into the native
interaction scheme in real time using a lightweight method based on spatial
restrictions. The system is also prepared to use Nintendo's Wiimote as an
auxiliary and unobtrusive gamepad for physically or verbally impractical
commands. System validation was performed by analyzing the performance of
certain tasks and examining user reports. Both confirmed this approach as a
practical and alluring alternative to the game's native interaction scheme. In
sum, this framework provides a game-controlling tool that is totally
customizable and very flexible, thus expanding the market of game consumers.Comment: WorldCIST'13 Internacional Conferenc
- âŠ