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Abstract. Domain walls, optimal droplets and disorder chaos at zero
temperature are studied numerically for the solid-on-solid model on a random
substrate. It is shown that the ensemble of random curves represented by the
domain walls obeys Schramm’s left passage formula with κ = 4 whereas their
fractal dimension is ds = 1.25, and therefore their behavior cannot be described as
showing ‘Schramm– (or stochastic) Loewner evolution’ (SLE). Optimal droplets
with a lateral size between L and 2L have the same fractal dimension as domain
walls but an energy that saturates at a value of order O(1) for L → ∞ such
that arbitrarily large excitations exist which cost only a small amount of energy.
Finally it is demonstrated that the sensitivity of the ground state to small changes
of order δ in the disorder is subtle: beyond a crossover length scale Lδ ∼ δ−1 the
correlations of the perturbed ground state with the unperturbed ground state,
rescaled using the roughness, are suppressed and approach zero logarithmically.
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1. Introduction

Domain walls in disordered systems play an important role in understanding the stability
of the ordered phase, the energetics of large scale excitations, the asymptotic dynamics in
and out of equilibrium as well as the sensitivity to changes of external parameters. They
have been studied quite intensively in recent years for Ising spin glasses [1]–[8], XY spin
glasses [9], random field systems [10]–[13], random ferromagnets [10], disordered elastic
manifolds [15]–[20], and many other systems.

Two domain wall properties are prominent. The first concerns energy and can be
characterized by the behavior of the scaling of the domain wall energy with the lateral
size, which gives rise to a first, sometimes universal, exponent, the stiffness exponent
θ. The second concerns the geometry and gives rise to another, sometimes universal,
exponent, the fractal dimension ds, or, if the domain is not fractal, a roughness exponent
ζ . The interplay between the energetics and geometry of the domain walls (i.e. between
the stiffness exponent and fractal dimension) determines how sensitive the system state
is to changes of either external parameters, like the temperature or a field, or internal
parameters, like small disorder variations. This sensitivity is often extreme in glassy
systems and goes under the name of ‘chaos’ [1].

Domain walls of glassy systems in two space dimensions represent fractal curves in the
plane and the question arises of whether they fall into the general classification scheme for
ensembles of random curves described as the Schramm– (or stochastic) Loewner evolution
(SLE) scheme [21, 22]. Recently indications were found that domain walls in 2D spin
glasses (at zero temperature) can indeed be described as showing SLE [23, 24], at least for
a Gaussian distribution of the bonds, but apparently not for binary couplings [25]. Also
the domain wall behaviors in the random bond Potts model at the critical point (i.e. at
finite temperature) were found to be numerically consistent with SLE [26]. It appears
natural to ask whether the domain walls in other two-dimensional disordered systems are
potential candidates for a description in terms of SLE.
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In this paper we study domain walls and chaos at zero temperature in the solid-
on-solid (SOS) model on a disordered substrate. This is a numerically convenient
representation of a two-dimensional elastic medium, with scalar displacement field,
interacting with quenched periodic disorder. It has been studied in order to
describe various physical situations ranging from vortex lattices in superconductors to
incommensurate charge density waves and crystal growth on a disordered substrate [27]–
[29]. Here we focus on three questions. (1) Can domain walls in this model be described as
showing SLE? (2) What is the relation between the size and energy of optimal excitations
(droplets) in this model? (3) Does disorder chaos exist in the ground state of this model?
After a brief summary of what is already known about the model and a description of the
numerical method by means of which we compute the ground state and the domain walls,
these three issues are studied in separate sections. The paper ends with a discussion of
the results obtained.

1.1. The model

We consider the solid-on-solid model on a disordered substrate defined by the Hamiltonian

H =
∑

(ij)

(hi − hj)
2, hi = ni + di, (1)

with i ≡ (xi, yi) ∈ Z
2. In equation (1) the height variables ni (i = 1, . . . , N) take on

integer values ni = 0,±1,±2, . . . and the offsets di are independent quenched random
variables uniformly distributed between 0 and 1. The sum is over all nearest neighbor
pairs (ij) of a rectangular lattice of size Lx × Ly (Lx = Ly = L if not stated otherwise).
The boundary conditions will be specified below in the context of domain walls. The
Hamiltonian in equation (1) provides a discrete model of a two-dimensional elastic medium
in a disordered environment. In the continuum limit, it is described using a sine–Gordon
model with random phase shifts (and in the absence of vortices), the so called Cardy–
Ostlund model [30],

HCO =

∫
d2r (∇u(r))2 − λ cos(2π[u(r) − d(r)]), (2)

with a continuous scalar displacement field u(r) ∈ (−∞, +∞) and quenched random
variables d(r) ∈ [0, 1]. Discretizing the integral and taking the infinite strong coupling
limit λ → ∞ one recovers (1).

It is well known that this model, (1) and (2), displays a transition between a high-
temperature phase T > Tg = 2/π, where the disorder is irrelevant, and a low-temperature
phase below Tg, dominated by the disorder. The high-temperature phase T > Tg is
characterized by a logarithmic thermal roughness

C(r) = 〈(hi − hi+r)2〉 ∼ T log r, (3)

where 〈· · ·〉 denotes the thermal average and . . . the average over the quenched disorder.
The low-temperature or glassy phase is instead ‘superrough’, characterized by an
asymptotically stronger (log-square) increase of C(r):

C(r) ∼ c(T ) log2 r + O(log(r)), (4)
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which means ζ = 0, as expected for a random periodic system. Close to Tg, a Coulomb gas
renormalization group (RG) analysis to lowest order gives c(T ) 
 (1−T/Tg)

2/2π2 [29], in
rather good agreement with numerical simulations [31]. At T = 0, numerical simulations
give the estimate c(T = 0) ≈ 0.5/(2π)2 ≈ 0.012 [16, 32]. While earlier studies, based
on ‘nearly conformal’ field theory [33], claimed an exact result for c(T ), predicting
c(T = 0) = 0, in clear contradiction with the numerics, a more recent approach based
on the FRG, incorporating non-analytic operators, predicts a non-zero c(T = 0) which
compares reasonably well with the numerics [34].

For free or periodic boundary conditions, the Hamiltonians (1) and (2) have a discrete
symmetry; the energy is invariant under a global height (displacement) shift ni → ni +Δn
(u(r) → u(r) + Δn), where Δn is an arbitrary integer. This symmetry will not be
broken in the low-temperature phase of the infinite system and true long range order
at T < Tg is absent, i.e. 〈hi〉 = 0. Concomitantly the model (1), with free or periodic
boundary conditions, has infinitely many ground states, which differ by a global shift
Δn ∈ {±1,±2, . . .}.

1.2. Domain walls

By an appropriate choice of boundary conditions one can force a domain wall into the
system, which is most easily visualized at T = 0 (cf figure 1): consider the square geometry
and fix the values of the boundary variables to ni = 0. This yields a unique ground state
configuration n0

i . If one fixed the boundary variables as ni = +1, the corresponding
ground state would be n′0

i = n0
i + 1. A domain wall inducing boundary condition is

one in which the lower half of the boundary values are fixed at ni = 0 and the upper
half to n0

i = 1. The ground state of this set-up is then ñ0
i = n0

i in some, mainly the
lower, region of the system, and ñ0

i = n′0
i in the rest—the two regions separated by a

domain wall of non-trivial shape (see figure 1). For a continuous distribution of offsets
di this zero-temperature domain wall is unique with probability 1, since for arbitrarily
fixed boundary conditions the ground state of (1) is unique. Note that the domain wall
is a single connected path from the center of the left boundary to the center of the right
boundary, and cycles disconnected from this path (isolated bubbles or droplets) cannot
occur in a ground state configuration since they are equivalent to excitation clusters (see
below) and thus energetically unfavorable.

It turns out that these domain walls are fractal [16, 18], which means that their lengths
ldw scale with linear system size as

lpath ∼ Lds , (5)

with ds > d − 1 = 1. The numerical estimate for ds is ds = 1.27 ± 0.02 [18]. Such
a fractal scaling of zero-T domain walls is also found for spin glasses; in the 2D EA
model with Gaussian couplings it is ds,SG = 1.27 ± 0.01, and with binary couplings it is
ds,SGB = 1.33±0.01. On the other hand, zero-T domain walls in disordered Ising or Potts
ferromagnets are rough (i.e. are characterized by algebraic correlations) but not fractal.

The energy for such a domain wall, given by the difference between the energy of the
ground state of the system with the domain wall inducing boundary conditions and the
one with homogeneous boundary conditions, increases with L logarithmically:

ΔE ∼ log L. (6)
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Figure 1. Left: ground state n0 of a 200 × 200 system with the boundary sites
(indicated in green) fixed at ni = 0. The different height values ni are gray-coded
(dark = low values, bright = high values). Middle: ground state configuration of
the same system as to the left with the upper half of the boundary sites (indicated
in red) fixed at ni = 1 and the lower half (indicated in green) at ni = 0. Right:
plot of the difference between the left and middle plots: in the lower white region
the ground state configuration is identical to the corresponding sites in the left
figure, whereas in the upper gray region they differ by exactly Δn = 1 from the
corresponding site in the middle panel. The border between the white and the
gray regions is a domain wall, representing a step in the height profile of the
ground state.

This result, which was obtained by numerical simulations [16], is consistent with the usual
scaling relation ΔE ∼ Lθ together with the exact result θ = d − 2 + 2ζ = 0 (thanks to
statistical tilt symmetry [35]). This logarithmic behavior is characteristic of a marginal
glass phase, described as a line of fixed points indexed by temperature (which is here
marginal in the RG sense). For comparison, the stiffness exponents for 2D and 3D spin
glasses are θSG2D = −0.28±0.01 and θSG2D = 0.3±0.1, respectively (and thus characterized
by a T = 0 fixed point), whereas for disordered Ising or Potts ferromagnets, ΔE ∼ Ld−1.

1.3. The method

The ground states of (1), i.e. the configuration n0 = (n0
1, . . . , n

0
N) with the lowest value

for the energy H [n0] for a given disorder configuration d = (d1, . . . , dN), can be computed
very efficiently using a minimum cost flow algorithm [36, 16, 37]. For the specific details of
how domain walls are induced in the ground state it is useful to recapitulate the mapping
onto a minimum cost flow problem.

After introducing the height differences n∗
ij = ni − nj (integer) and d∗

ij = dj − di

(∈[−1, +1]) along the links k = (i, j) on the dual lattice G∗ one obtains a cost (or energy)
function that lives on the dual lattice:

H [n∗] =
∑

k

(n∗
k − d∗

k)
2. (7)

The configurations n∗
k = (n∗

1, . . . , n
∗
M), where M is the number of links (or bonds) of the

original lattice, constitute a ‘flow’ on the graph G∗. Suppose the original model (1) has
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d)

b)a)

c)

Figure 2. Different geometries and constraints on domain walls considered here.
(a) Boundary conditions inducing a step/domain wall as in figure 1. (b) Boundary
conditions inducing a step/domain wall running diagonally from one corner of the
rectangular lattice to the opposite one. (c) Boundary conditions for a circular
domain inducing a boundary along the equator with two different orientations of
the underlying lattice. (d) Boundary conditions for a half-circle domain and a
domain wall with one fixed end at the origin and a free end on the outer half-circle.

free boundary conditions. Then the sum of the height differences along any directed cycle
in the original lattice vanishes. Therefore the divergence of n∗ vanishes at all sites i:

(∇ · n∗)i = 0, (8)

which means that the flow n∗ on G∗, in order to give rise to a height field n on the
original lattice G, has to be divergenceless, i.e. without sources or sinks. The problem
of determining the ground state n of (1) is thus equivalent to that of finding the flow n∗

with the minimum cost (7) under the mass-balance constraint (8)—i.e. a minimum cost
flow problem, for which there exist very powerful algorithms [36, 16, 37].

Enforcing one domain wall, or step of height 1, in the ground state of (1) by means
of an appropriate boundary condition is then equivalent to modifying the constraint (8)
at exactly two sites, the start and end points of the domain wall (see figures 2(a)–(d)).
As an example consider the case in which one wants the domain wall to start at the point
(x, y) = (1, L/2) and end at (x, y) = (L, L/2) in a square lattice. Then one chooses the
boundary conditions for ni as follows (cf figure 2(a)): one fixes the values for ni at the
lower half of the boundary (i.e. at i = (x, 1) for x = 1, . . . , L and i = (1, y) and (L, y)
for y = 1, . . . , L/2) at ni = 0, and the values for ni at the upper half of the boundary
(i.e. at i = (x, L) for x = 1, . . . , L and at i = (1, y) and (L, y) for y = L/2 + 1, . . . , L) at
ni = 1. Translating these boundary conditions for the height variables n into constraints
for the flow variables n∗, one immediately sees that at the points (x, y) = (1, L/2) and
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(x, y) = (L, L/2), where the step in the height profile starts and terminates, respectively,
the constraint (8) is modified into

(∇ · n∗)(1,L/2) = +1, (∇ · n∗)(L,L/2) = −1. (9)

In other words: the induced step sends a unit of flow from the starting point of the
domain wall, hence being a source of unit strength, across the sample to the end point,
the sink, along an optimal (minimum cost/energy) path. In what follows we identify
domain walls immediately with the optimal path for the extra flow unit defined by the
modified mass-balance constraints (9).

With the help of this concept one can then also consider situations in which the
starting point of the domain wall is fixed but the ending is only forced to be on a specific
region of the boundary, opposing the starting point (see figure 2(d)). Suppose one wants
the domain wall to start at is = (1, L/2), and terminate somewhere on the opposing
boundary it = (L, y) with y ∈ {1, . . . , L}. Then one introduces an extra node into the
dual graph G∗, denoted as the target node, connects it with bonds of zero cost to all sites
on the terminal boundary, and assigns a sink strength −1 to it. The source node is the
one closest to is in the dual graph and has source strength +1. The minimum cost flow
of this arrangement is then the desired ground state configuration with a domain wall
starting at is and ending somewhere on the opposite boundary.

2. Schramm–Loewner evolution (SLE)

Since the domain walls as defined above represent fractal curves embedded in a two-
dimensional space, the question arises of whether they fall into the classification scheme of
Schramm–Loewner evolution (SLE) like loop-erased random walks, percolation hulls, and
domain walls at phase transitions in 2D in the scaling limit [22, 21]. The necessary (and
sufficient) condition for a set of random curves connecting two points on the boundary D of
a domain to be described as showing SLE are (1) the measure for these random curves has
to obey a Markov property, (2) the measure has to be invariant under conformal mappings
of the domain. Recently it was suggested that domain walls in 2D spin glasses can also
be described as showing SLE [23, 24], although the conformal invariance requirement is
not fulfilled for each individual disorder realization and also the Markov property is not
obeyed after disorder averaging. However, conformal invariance might hold for the disorder
averaged model and the Markov property might be obeyed almost always in a statistical
sense.

A single parameter κ parameterizes all SLEs and it is related to the fractal dimension
of the curve via

ds = 1 + κ/8. (10)

The parameter κ is the diffusion coefficient of the Brownian motion that underlies the
SLE and generates via a random sequence of simple conformal maps the fractal curves.
In addition to the fractal dimension it determines various other geometric and statistical
properties of the SLE curves. One of them is that the probability that a curve in the
upper half-plane H generated by SLE will pass to the left of a given point z = x + iy is
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Figure 3. Average length of domain walls spanning the system from one end to
the opposite one as a function of the system size L in a log–log plot. The straight
lines are least square fits to (5) and yield the estimate for the fractal dimension
ds = 1.25 ± 0.01.

given by Schramm’s ‘left passage formula’ [38]

Pκ(z) =
1

2
+

Γ (4/κ)√
π Γ ((8 − κ)/2κ)

2F1

(
1

2
,
4

κ
;
3

2
;−

(
x

y

)2
)

x

y
, (11)

where 2F1 is the hypergeometric function: 2F1(a1, a2; b; z) =
∑∞

k=0(Γ(k+a1)/Γ(a1))(Γ(k+
a2)/Γ(a2))(Γ(b)/Γ(k+ b))(zk/k!). Since the probability depends just on the ratio between
Re(z) and Im(z), it is sometimes useful to replace this ratio by a function of an angle. We
decided to use tan (φ) = x/y. So φ ∈ ]−(π/2); (π/2)[ is the angle at the origin between
the imaginary axis and z. This formula holds for the domain of the SLE being the upper
half-plane with the start point of the curve being identical to the origin of the coordinate
system and the end point at infinity.

A standard check of whether an ensemble of random curves is a potential candidate for
showing SLE therefore is to simultaneously determine their fractal dimension ds and the
left passage probabilities, and to test whether the latter fit (11) with κ = 8(ds−1) [23]–[25].

In figure 3 we show our data for the average length of a domain wall in the
configuration depicted in figure 2(b), i.e. starting at the point is = (1, 1) and ending
at it = (L, L) in an L × L geometry and at it = (L, 2L) in an L × 2L geometry. Least
square fits to the scaling law (5) yield the estimate ds = 1.25±0.01 which agrees with the
value found in [18].

This value for the fractal dimension would imply κ = 2.00± 0.08 if the domain walls
could be described as showing SLE. Next we determined for different points (x, y) of the
lattice the frequency that a domain wall passes to the left of it, yielding a probability
p(x, y), which we compared with Schramm’s left passage formula Pκ(x, y) for fixed κ. For
the circle domain and the choice of the start and end points of the domain wall as shown
in figure 2(c), the formula (11) is modified.

Let E be the unit circle in the complex plane. The Cayley function g: E →
H, z 
→ i((1 + z)/(1 − z)) maps the unit circle conformally into the upper half-plane H.
Furthermore g(−1) = 0, g(1) = ∞; thus curves in Ē starting at z = −1 and ending at
z = 1 are conformally mapped onto curves in H̄. For the latter, if the curves are described
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Figure 4. Left: the cumulative squared deviation fG(κ) of the computed left
passage probabilities p(x, y) from the values Pκ,g(x, y) given by (12) as a function
of κ. The underlying lattice geometry is the circle as sketched in figure 2(c);
the corresponding conformal map g(z) entering (12) is given in the text. The
minimum is at κ = 4.00 ± 0.01 with a squared difference per grid point of
about 2 × 10−5. Right: absolute difference between the calculated left passage
probability p(x, y) and the SLE expectation Pκ,g(x, y) (12) for κ = 4 as a function
of the 2D lattice coordinates (x, y). For the whole unit circle the deviation is
almost everywhere smaller than 1%. Note that the domain wall is fixed at (−1, 0)
and (1, 0), where the largest deviations occur.

as showing SLE, Schramm’s formula (11) holds, so for the former, the modified formula

Pκ,g(z) =
1

2
+

Γ (4/κ)√
π Γ ((8 − κ)/2κ)

2F1

(
1

2
,
4

κ
;
3

2
;−

(
Re g(z)

Im g(z)

)2
)

Re g(z)

Im g(z)
(12)

holds. Hence we filled the unit circle with finer and finer grids G approximating better
and better the continuum limit for the curves in E that we want to check for SLE. For
this we define the function

fG(κ) =
∑

(x,y)∈G

[p(x, y) − Pκ,g(x, y)]2 (13)

that measures the cumulative squared deviation of the probabilities p(x, y) from the SLE
value for given κ. The result is shown in figure 4. The minimal deviation of the data
from the expected SLE result is at κ = 4.00 ± 0.01 which clearly differs from the value
κ = 2.00±0.08 that one would expect from the fractal dimension if the domain walls were
to be described as showing SLE.

Next we varied the geometry and the domain wall constraints and studied the case
depicted in figure 2(b), i.e. a quadratic domain D with corners at 0, p, p + ip, ip (p real
and positive). The function g:D → H: z 
→ −p(z; S) with S = {2n1p + i2n2p|n1, n2 ∈ Z}
defines a conformal map from D into H, where p(z; S) = (1/z2)+

∑
ω∈S\{0}[(1/(z − ω)2)−

(1/ω2)] is the Weierstrass p-function. Furthermore g(p + ip) = 0, g(0) = ∞; thus curves
in D̄ starting at z = 0 and ending at z = p + ip are conformally mapped onto curves in
H̄ starting at the origin and extending to infinity. Using g in (12) we determined κ in
the same way as in the case of the unit circle. The result is shown in figure 5 and yields
κ = 4.00 ± 0.01.
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Figure 5. Cumulative deviation fG(κ) as a function of κ and absolute difference
between p(x, y) and Pκ,g(x, y) for κ = 4 as in figure 4 but for the square geometry
as depicted in figure 2(b). Note that the domain wall is fixed at (0, 0) and (L,L),
where the largest deviations occur.

Figure 6. Deviation of the left passage probability p(φ) from the SLE expectation
Pκ(φ), (11), for κ = 4 in the half-circle geometry depicted in figure 2(d)
(p = 510, q = 255, R = 500), i.e. one free end of the domain wall.

We also compared p(x, y) directly with Pκ=4(x, y) for curves in the upper half-plane
H starting at the origin. For this we considered the geometry depicted in figure 2(d), in
which the curves starting at the origin can end anywhere on the half-circle. We checked
the prediction (11) for different radii R and angles Φ = arctan(x/y) ∈ ]−(π/2); (π/2)[.
The result is shown in figure 6, where the deviations from Pκ(φ), (11), for κ = 4 are
everywhere less than 2% for the size L = 500 and radii shown in figure 6. We also observe
that the deviation systematically decreases with the system size L for fixed ratio R/L,
indicating vanishing deviations P (Φ) − Pκ=4(Φ) in the limit L → ∞.

For all the geometries with domain walls starting at a fixed point that we studied,
we found that the data can be nicely fitted with κ = 4, but the fractal dimension of the
domain walls is unchanged for the different set-ups: ds = 1.25±0.01. The conclusion is that
domain walls in the SOS model on a disordered substrate cannot be described as showing
SLE. A question arises: Which condition for SLE is actually violated? The fact that for
all geometries the left passage probability that we studied can be well represented by a
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common expression, Schramm’s formula, containing the conformal map of the half-plane
to the specific geometry under consideration, would actually hint at conformal invariance.
But obviously this does not exclude the possibility that a breaking of conformal invariance
manifests itself in other quantities, or even other geometries. We did not attempt to check
the domain Markov property, as was tried in [24].

Finally we checked whether domain walls with both ends not fixed can be described as
showing SLE, as was reported for 2D spin glasses in [23, 24]. In the SOS model on a square
lattice this is realized by connecting one side (or a central part of it) to the source and
the opposite to the sink. The algorithm will automatically find the optimal entry and exit
points of the additional flow unit, i.e. the optimal end points of the domain wall on the two
opposing boundary sides (cf [18]). To avoid the influence of the boundary perpendicular
to the entry and exit we used a 2L × L geometry and connected only the central part
of length L of the long (2L) sides to the source and sink, respectively. To determine the
left passage probabilities p(φ) we define for each individual sample the entry point of the
domain wall as the origin of the coordinate system. As a result we find that now the
value for κ that yields the best fit of Schramm’s formula to the left passage probabilities
is changed to κ ≈ 3, but the fractal dimension is still df = 1.25± 0.01 (cf [18]). Therefore
we conclude that also boundary conditions with free domain wall start and end points do
not show SLE.

3. Excitations

In this section we study large scale excitations that cost a minimum amount of energy,
also denoted as droplets [2], and the size dependence of their energy. According to the
usual arguments in droplet scaling theory [2] this excitation energy is expected to scale
in the same way as a domain wall of lateral size L, i.e. like ΔE ∼ Lθ with θ the stiffness
exponent, which for the system that we consider is θ = 0. The domain wall energy scales
as ΔEDW ∼ log L (cf (6)), and if it is correct that all excitations of scale L display the
same behavior then a question arises: How can thermal fluctuations destabilize the ground
state such that the present model is indeed characterized by a line of fixed points, indexed
by temperature (and thus different from a T = 0 fixed point like for spin glasses with
d > 2)? A log L scaling of excitations still implies that larger and larger excitations,
needed to occur to decorrelate the system’s state from the ground state, need more and
more energy and are therefore more and more unlikely, i.e. occurring with a probability
that decays as exp(−ΔEDW/T ) ∼ L−c/T at T > 0.

The solution to this problem lies in the freedom that domain walls of excitations of
scale L have to optimize their energy (cf a similar discussion in the context of optimized
dislocations in [18]). Finding the optimal excitation of a given scale requires a greater
effort than searching for a domain wall with given start and end points (as we have seen
above, there are even efficient ways to optimize the positions of these end points). There
is a simple way to induce excitations of an arbitrary scale, as first proposed in the context
of spin glasses [4] and used again in [8]: we could compute the ground state for fixed
boundary conditions as depicted in the left panel of figure 1; this yields n0. Then we
choose a central site (say i = (x, y) = (L/2, L/2)), fix it to ni = n0

i + 1, fix the boundary
as before and compute the ground state again, giving ñ0. This will differ from n0 only by
a compact cluster C that contains the site i and which has ñ0

i = n0
i + 1. This is then in
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c) s

t

a) b)

Figure 7. (a) Sketch of a droplet excitation representing a simply connected
cluster C of sites i whose height values are increased by 1 as compared to
the ground state: ni = n0

i + 1∀i ∈ C. (b) Directed cycle in the dual lattice
corresponding to the cluster in (a) representing the step in height profile induced
by raising the cluster C by one height unit. (c) Sketch of an s–t cut of the nodes
of the original lattice graph such that those sites connected to the external node
s are forced to be in the set S and those connected to t, in the set T (see the
text).

fact an optimal or droplet excitation, but its size V = #{i ∈ C} can vary from 1 to L2.
Droplets of a fixed size cannot be generated in this way.

The SOS model on a disordered substrate actually allows for an efficient search for
optimal excitations of a given scale, as we describe in the following.

A droplet excitation in the SOS model is a simply connected cluster C of sites whose
height values are all increased (or all decreased) by 1 as compared to the ground state:
ni = n0

i + 1 ∀i ∈ C; see figure 7. Pictorially it is, in the height representation, an extra
mountain (valley) of height +1 (−1). Its boundary is a directed cycle in the dual lattice,
and remembering the mapping to the minimum cost flow problem (7)–(8), adding a cycle
to a feasible solution maintains the divergence-free constraint (8). Hence, the transition
from one state to the other is determined by such a cycle. Thus first one has to compute

doi:10.1088/1742-5468/2009/08/P08022 12

http://dx.doi.org/10.1088/1742-5468/2009/08/P08022


J.S
tat.M

ech.
(2009)

P
08022

Domain walls and chaos in the disordered SOS model

the ground state of a given disorder realization. Then in order to find a droplet excitation
of this ground state that has a given lateral size one can for instance force this extra
cycle to run within an annulus of inner radius L/4 and outer radius 3L/4 (i.e. its average
diameter is L/2). This can be achieved by simply removing all sites/bonds outside this
annulus and then computing the optimal cycle within this modified graph, the cost for
which depends on the ground state configuration and the substrate heights. One assigns
costs to each directed edge (ij) that corresponds to the energy cost for increasing the
height difference between its left and right sides by one unit [36, 16, 37]:

c(ij) = (h0
i + 1 − h0

j )
2 − (h0

i − h0
j )

2 = 2(h0
i − h0

j ) + 1, (14)

where h0
i = n0

i + di. Note that in practice one may use the reduced costs emerging from
the ground state. That is, if and only if a feasible flow has minimum energy, then there
are non-negative reduced costs such that the cost of each cycle remains unchanged. If the
successive shortest path algorithm is used to solve the minimum cost flow problem when
computing the ground state n0, then no extra work is necessary to compute the desired
non-negative reduced costs. Hence, Dijkstra’s shortest path algorithm can be used to find
the shortest directed cycle around the annulus, i.e. the one separating the inner and outer
rings of the annulus. To this end, the annulus is cut from the outer to the inner ring,
i.e. the corresponding edges are removed from the graph, to prevent the shortest path
from short-cutting. For each of these removed edges, the shortest path from its head to
its tail is computed, where only the remaining edges are used. The shortest paths obtained
are completed with the corresponding directed edges to form cycles around the annulus.
This procedure has to be repeated for all (or a representative number of) positions of
the annulus within the original lattice (in practice one fixes the annulus and shifts the
disorder configuration, wrapping it around a toroidal geometry).

The procedure of finding the optimal cycle in a given annulus can be simplified by
observing that the droplet excitation in the height representation corresponds to an s–t
cut of the underlying graph [37]5 in such a way that one forces all nodes of the inner circle
of the annulus to belong to S and all nodes of the outer ring of the annulus to belong to
T ; see figure 7(c). The minimum s–t cut with respect to the non-negative reduced edge
costs of the ground state n0 is then exactly the boundary of the optimal excitation (or the
optimal cycle) that one is searching for, for a given annulus arrangement. According to the
famous ‘min cut–max flow’ theorem, one can compute the minimum s–t cut in polynomial
time by solving the associated maximum flow problem [16, 37]. We have implemented this
procedure and show for illustration a number of examples in figure 8.

Figure 9 shows our result for the disorder averaged energy of the optimal excitations
of scale L that we obtain with the procedure described above. This represents an upper
bound for the optimal excitations of scale L since the annulus arrangement does not
include all possible excitations of scale L. As one can see, this bound saturates at a finite
energy of order O(1) in the limit L → ∞. Consequently arbitrarily large excitations exist
that cost only a small amount of energy, which renders the ground state unstable at a
non-vanishing temperature.

Figure 10 shows the distribution of optimal excitation energies for different values
of L. As can be seen, the distribution is nearly Gaussian with a finite width, i.e. it

5 An s–t cut is a partition of the nodes of a graph G into two disjoint sets S and T = G/T such that s ∈ S and
t ∈ T .
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Figure 8. Examples of optimal excitations of scale L, whose boundary (domain
wall) is forced to lie in the interior of the area indicated in green (an annulus in
square geometry). From the top row to the bottom we have L = 32, 64, 128 and
256. Pictures are scaled to have the same size.

Figure 9. Disorder averaged energy of the optimal excitations of scale L as a
function of L—left on a linear scale, right on a log–log scale.
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Figure 10. Distribution of the optimal excitation energies of scale L for three
values of L. For L ≥ 128 this distribution becomes independent of L.

does not display long, e.g. algebraically decaying, tails, which implies that the average is
representative for almost all disorder configurations. It can also be seen that the whole
probability distribution PL(ΔE) becomes independent of the length scale L for large L.
This is an important observation since from droplet scaling theory [2] one would expect
PL(ΔE) ∼ l−θp̃(ΔE/Lθ). For θ = 0, as is the case here, it is not a priori clear whether
this implies PL(ΔE) ∼ (lnL)−1p̃(ΔE/ ln L), i.e. a scaling with the average domain wall
energy ln L, or PL(ΔE) ∼ p̃(ΔE), i.e. droplet size independence. Figure 10 shows that
the latter is correct.

This has important implications for the scaling of the average droplet energy within
a system of lateral size L as determined in [20]. There the average energy of droplets
of size l < L, (ΔE)min

L , i.e. without a lower bound, was estimated to behave like
(ΔE)min

L ∼ ln L. In order to make contact with our result one should note that this
energy is the minimum among droplets of the kind that we determined here, with size
l ∈ [L/2, L], l ∈ [L/4, L/2], l ∈ [L/8, L/4], . . ., i.e. a minimum of approximately ln L
random numbers. Only if the probability distribution of these energies is (a) independent
and (b) identically distributed does their minimum go like the inverse of their number,
i.e. (ΔE)min

L = min{(ΔE)L/21 , (ΔE)L/22 , . . . , (ΔE)L/2k} ∼ 1/k with k ∼ ln L. According
to our result depicted in figure 10 the assumption b, which is implicit in the reasoning
of [20], is indeed fulfilled.

Finally we note that we also determined the fractal dimension of the boundary of the
optimal excitations and found that it is identical to the fractal dimension of the domain
walls with fixed start and end points: ds = 1.25 ± 0.01.

4. Disorder chaos

In this section, we study the sensitivity of the ground state to a small change of the
quenched disorder configuration. To this end we generate a configuration of random
offsets d1

i and compute the associated ground state h1
i . Then we slightly perturb this

configuration of random offsets d2
i = di+δεi with δ � 1 and where the εis are independent
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and identically distributed Gaussian variables of unit variance, and we compute the
associated ground state h2

i . The question that we ask is: How different are these two
configurations of the systems h1

i and h2
i ?

Such questions first arose in the context of spin glasses [1], where it was proposed
that disorder induced glass phases may exhibit ‘static chaos’, i.e. extreme sensitivity
to such small modifications of external parameters (like disorder, considered here, or
temperature). Such small perturbations are argued to decorrelate the system beyond
the so called overlap length Lδ which diverges for small δ as Lδ ∼ δ−1/α, with α the
chaos exponent. As an example let us first consider the case of an Ising spin glass with a
continuous Gaussian distribution of random exchange interactions, of width J . The system
has two ground states related by a global spin reversal. Within the phenomenological
droplet theory [1, 14, 41], a low-lying energy excitation of the system involves an overturned
droplet of linear size L and costs an energy JLθ. If we now add a small random bond
perturbation, say Gaussian of width δJ , the excess energy of a droplet is modified. For
such a spin glass system, this energy comes only from the bonds which are at the surface
of the droplet. Their contribution is thus the sum of Lds independent random variables
of width δJ , where ds is the fractal dimension of the droplet: it is thus of order ±δ�ds/2.
Therefore the ground state is unstable against perturbation on length scales L such that
δJLds/2 > JLθ, i.e. L > Lδ where Lδ ∼ δ−1/αSG with αSG = ds/2 − θ. One thus sees
that, for spin glasses, disorder chaos is closely related to the (geometrical) properties of
the domain walls.

The situation is rather different for elastic systems in a random potential as considered
here. Here we consider the SOS model on a disordered substrate defined in equation (1)
as

H =
∑

(ij)

(hi − hj)
2, hi = ni + di, (15)

with i ≡ (xi, yi) ∈ Z
2. In equation (15) the height variables ni (i = 1, . . . , N) take on

integer values ni = 0,±1,±2, . . . and the offsets di are independent quenched random
variables uniformly distributed between 0 and 1. This system (with free or periodic
boundary conditions) has infinitely many ground states which differ by a global shift
Δn ∈ {±1,±2, . . .}. Again, within the droplet argument [14, 42, 43] a low-lying energy
excitation of the system involves a droplet of size L where the height field is shifted by
unity, say Δn = 1, and it costs an energy Lθ. But now if we had a small perturbation
d2

i = d1
i + δεi, the excess energy of this droplet would come from the bulk of the droplet,

which experiences a random force field. This contribution is thus the sum of Ld random
variables of width δ and therefore in this case the ground state is unstable against the
perturbation on length scales L > Lδ where Lδ ∼ δ−1/α with α = d/2 − θ. Here d = 2
and θ = 0 and thus one expects Lδ ∝ δ−1. At variance with the case of spin glasses
discussed above, one thus sees that for disordered elastic systems, disorder chaos is not
directly related to the properties of domain walls.

For the present model (15), disorder chaos was demonstrated analytically at finite
T near the glass transition Tg using a Coulomb gas renormalization group [44]. At
T = 0, some indications of disorder chaos were also found numerically in [16] where global
correlations between h1

i and h2
i were studied through χ(δ) =

∑
i(h

1
i − h2

i )
2. In this paper,

following [43], we characterize the local correlations between these two configurations
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using the correlation function Cij(r) with r ≡ (x, y) (with i, j = 1, 2):

Cij(r) = (hi
k − hi

k+r)(h
j
k − hj

k+r), (16)

where k+r ≡ (xk +x, yk +y) and for the rotationally invariant system considered here one
has Cij(r) ≡ Cij(r) with r = |r|. In the following we will talk about intralayer correlations
for Cii(r) and interlayer correlations for Ci�=j(r). Equivalently, one can also study such
correlations (16) in Fourier space and define Sij(q) with q ≡ (qx, qy) as

Sij(q) = ĥi
qĥ

j
−q, ĥj

q =
1

L2

∑

k

hj
ke

iq·k, (17)

where q · k = qxxk + qyyk. For the rotationally invariant system considered here, one has
Sij(q) ≡ Sij(q) where q = |q|.

Disorder chaos at T = 0 in generic disordered elastic systems in dimension d was
recently studied analytically using the functional renormalization group (FRG) [43]. At
one-loop order in a dimensional expansion in d = 4 − ε it was found that for short range
disorder (like in random bond problems) and random periodic systems in dimension d > 2
(including one-component Bragg glass), one has [43]

C12(r) = r2ζΦ(δrα) with Φ(x) ∼
{

cst, x � 1,

x−μ, x � 1,
(18)

with cst a constant, ζ the roughness exponent and where μ is the decorrelation exponent.
Translated into Fourier space, this yields

S12(q) = L
(d+2ζ)
δ ϕ(qLδ) with ϕ(x) ∼

{
x−d−2ζ+μ, x � 1,

x−d−2ζ , x � 1,
(19)

with Lδ ∼ δ−1/α and where the behavior for large x is then such that the dependence on
Lδ cancels in this limit, as it should.

The two-dimensional disordered SOS model that we are considering here (15)
corresponds precisely to the marginal case d = 2 (with ζ = 0 and thus θ = 0) where,
as discussed in [43, 45], the analysis yielding the result in equation (18) ceases to be valid.
Indeed in that case non-local terms, irrelevant for d > 2, are generated under coarse-
graining and these additional terms have to be handled with care at T = 0. One thus
considers the Hamiltonian associated with the two copies of the system parameterized by
the scalar fields ui ≡ ui(r):

H2 copies =
1

T

∑

i=1,2

∫
d2r

[
1

2
(∇ru

i)2 + Vi(u
i, r) − μi(r) · ∇ru

i

]
, (20)

where μi ≡ (μi
x, μ

i
y) are two-component random tilt fields, which are generated upon

renormalization. While they are irrelevant for d > 2, they become relevant for d = 2
where they play a crucial role. These two copies u1, u2 are thus independent of (20), but
they feel two mutually correlated random potentials

Vi(u, r)Vj(u′, r′) = Rij(u − u′)δ2(r − r′), (21)

μi
ρ(r)μ

j
ρ′(r

′) = σijδρρ′δ
2(r− r′), (22)
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where i = 1, 2 is the index of the copy and ρ = x, y is a spatial index. This leads to a
replicated Hamiltonian, Zn = exp (−Hrep):

Hrep =
1

2T

∫
d2r

2∑

i=1

n∑

a=1

1

2
(∇ru

i
a)

2 − 1

2T 2

2∑

i,j=1

n∑

a,b=1

∫
d2r [Rij(u

i
a − uj

b)

− 1
2
∇ru

i
ab∇ru

j
abGij(u

i
a − uj

b)], (23)

where we used the notation ui
ab = ui

a − ui
b. In the ‘bare’ model, one has Gij(u) = σij .

Close to the transition T � Tg, this model (23) was studied using Wilson RG analysis
by varying the short scale momentum cutoff Λ	 = Λe−	, with � the log scale. It was
shown, using the Coulomb gas technique at lowest order, that Gii ∝ σ�. This leads to the
correlation function in Fourier space Sii(q) ∝ σ�/q2, which yields, setting � = log(1/q),
the log2 (r) behavior of the intralayer correlations (this result for Cii(r) can be derived
in a more controlled way using the exact renormalization group [46]). As regards chaos
properties, it was shown in [44] that G12(0) grows linearly with � for small � before it
saturates to a constant for large �, G12(0) ∼ σ̂ > 0, which yields S12(q) ∝ σ̂/q2. These
results close to Tg can be summarized as

S12(q) ∼

⎧
⎪⎪⎨

⎪⎪⎩

σ
log 1/q

q2
, q � L−1

δ ,

σ̂

q2
, q � L−1

δ ,

(24)

while in real space, the behavior of the interlayer correlation function C12(r) for T � Tg

is thus

C12(r) ∼
{

σ log2(r), r � Lδ,

σ̂ log(r), r � Lδ.
(25)

At T = 0, it was recently shown [34], using the FRG to one-loop order including the
term G11(u), that the intralayer correlation function also behaves like C(r) ∝ log2(r),
in rather good agreement with the numerics [16, 32]. One thus also expects to find
C12(r) ∝ log2(r) for r � Lδ [16, 32, 34]. For r � Lδ, a behavior of C12(r) ∼ σ̂ log r
as in equation (24) was discussed in [43]. To determine analytically whether σ̂ > 0
at T = 0 requires a detailed and difficult analysis of the coupled FRG equations
for Rij(u), Gij(u), (23), which goes beyond the previous studies done in that direction
in [34, 43, 45]. Here, we will answer this question using numerical simulations.

The purpose of our study is actually to answer two main questions: (i) What are the
residual correlations beyond Lδ and, in particular, is σ̂ also finite at T = 0? (ii) What is
the scaling form of this correlation function C12(r), i.e. the analogue of equation (18) from
which one can extract the overlap length Lδ and check the value of the chaos exponent
α = 1 as expected from droplet scaling?

Here will use the minimum cost flow algorithm described above to compute the
two ground states h1

i and h2
i with free boundary conditions. Instead of computing the

correlation function C12(r), we compute numerically the Fourier transform S12(q) of the
‘overlap’ between the configurations (17). Our simulations have been performed on a
square lattice of linear size L = 256 and we have chosen q = (q, 0) with q = 2πn/L with
n = 0, 1, 2, . . . , L − 1. The disorder average has been performed over 106 independent
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Figure 11. Left: plot of S12(q)y2/A(δ) as a function of y = sin (q/2) for different
values of δ = 0, 0.1, 0.2, 0.3 for a linear system size L = 256 on a log-linear scale.
The deviation from the straight line for δ > 0 is a clear indication of disorder
chaos. This behavior is consistent with the one in equation (24) and in particular
with a finite value of σ̂ at T = 0. Right: same data as in the right panel, where we
plot y2S12(q)/A(δ) + a log δ as a function of y/δ. The relatively good collapse is
consistent with the scaling form proposed in equation (26), implying in particular
α = 1.

samples. In figure 11 (left) we show our numerical data for S12(q). The behavior close
to Tg, (24), suggests strongly plotting q2S12(q) as a function of q. Given that we are
working on a discrete lattice of finite size, it is more convenient to work with the variable
y = sin (q/2) = [(1 − cos (q))/2]1/2 instead of q (of course for small q it makes no
difference). In figure 11 (left) we actually show a plot of S12(q)[sin (q/2)]2/A(δ) as a
function of sin (q/2) on a log-linear plot for different values of δ = 0, 0.1, 0.2, 0.3. On this
plot the amplitude A(δ) is chosen such that the curves for different values of δ coincide
for sin (q/2) ∼ 1, with A(0) = 1. For δ = 0, where S12(q) = S11(q), this plot is almost
a straight line, which suggests that for small q where sin (q/2) ∼ q/2, it is indeed the
case that S11(q) ∼ log (1/q)/q2: this produces the log2(r) behavior of the correlation
function C11(r) in real space. This result is consistent with previous numerical studies of
the ground state6.

For δ > 0 the behavior is however quite different: indeed for small q, the curves
deviate from the straight line indicating a saturation to a finite value. We have checked
that this is not a finite size effect: in particular, for a given value of δ, we have checked
that the value of q where the bending occurs and the saturating value do not depend on
L. This bending is thus a clear signature of disorder chaos in this model. In addition,
the saturation to a finite value is consistent with a positive value of σ̂ at T = 0. If one
translates these results into real space, one obtains a behavior of the correlation function
C12(r) ∝ σ̂ log r as in equation (25). Of course A(δ) → 1 when δ → 0 but we were not
able to characterize the dependence of A(δ) precisely. We emphasize that the observation

6 In addition, this gives an alternative way to estimate the amplitude of the log2(r) term; here a2 = 0.40, which
is slightly different from the previous estimate obtained from the fit of C11(r) in real space and yields a2 = 0.57
(which is actually recovered in the present simulations by applying the same fitting procedure).
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of disorder chaos here needs a precise computation of q2S12(q) and thus needs accurate
statistics.

The scaling form in equation (19) would suggest plotting q2S12(q) as a function of
L2ζ ϕ̃(qLδ). Here one has ζ = 0 together with α = 1 expected from a scaling argument
and, on the other hand, one expects (see figure 11 (left) and also equation (24)) to have
ϕ̃(x) ∼ −a log (x) for large x (with a = 0.016(1) estimated from q2S11(q)). Therefore, to
guarantee that S12(q) has a good limit when δ → 0, we propose the scaling form

S12(q) ∼ q−2
(
ϕ̃

(q

δ

)
− a log δ

)
, (26)

where the scaling function ϕ̃(z) behaves like

ϕ̃(z) =

{
cst, z → 0,

−a log z, z → ∞,
(27)

such that the additional constant −a log δ with a = 0.016(1) (independently of δ) is needed
to yield a well defined limit δ → 0. We have checked this scaling form (26) for different
values of δ = 0.1, 0.2, 0.3. Again, to take into account finite size effects, we use the variable
y = sin (q/2) instead of q. In figure 11 (right) we show a plot of y2S12(q)/A(δ) + a log δ as
a function of y/δ. The relatively good collapse of these curves corresponding to different
values of δ is in rather good agreement with the scaling in equation (26). This indicates
in particular that α 
 1, although a study of S12(q) for smaller values of δ would certainly
be necessary for obtaining a more precise estimate of this exponent.

5. Discussion

We found that the left passage probability of zero-temperature domain walls in the
disordered SOS model in different geometries agrees well (within the numerical error
bars) with Schramm’s formula for κ = 4. Since the fractal dimension of the domain walls
is ds = 1.25 ± 0.01 this is inconsistent with ds = 1 + κ/8 = 1.5 which should hold if this
ensemble of random curves could be described as showing SLE. One condition for SLE
to hold is that the measure of the ensemble of random curves obeys a domain Markov
property. Checking this numerically is a computationally extremely challenging endeavor
(cf [24]) and we did not attempt it here. The second condition for SLE is that the measure
is invariant under a conformal mapping of the domain within which the random curves
are defined. In our study we considered several different domain shapes and we found
that in all cases the left passage probability is represented by Schramm’s formula adapted
via a conformal map to the specific geometry under consideration. Although not being a
sufficient criterion for conformal invariance to hold in general, this observation is at least
surprising as regards the fact that κ and ds do not obey the SLE prediction. To shed light
on this issue, further tests of conformal invariance are worthwhile.

Interestingly the contour loops in this system (i.e. the lines connecting sites of equal
height in the ground state) have a fractal dimension close to df = 1.5 [39], the same
dimension as the contour loops in the SOS model without disorder at finite temperatures
above the critical temperature [22, 40]. The latter can indeed be described as showing SLE
with κ = 4 [22, 40]. It remains to be checked whether the contour loops in the disordered
SOS model can also be described as showing SLE with κ = 4.
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The boundaries of droplets, i.e. connected clusters of a given lateral size that have a
minimal excitation energy, have the same fractal dimension as domain walls (ds = 1.25),
but their energy ΔEl saturates at a small, finite value for increasing lateral size l. In [20]
it was shown that the mean droplet energy ΔEL decreases with system size L like
ΔE−1

L ∼ ln L. This result is actually consistent with ours, since in [20] the droplet
size was only restricted by an upper bound (the system size L) but not by a lower bound
as in our study. So the result for ΔEL is the optimal excitation among typically log L
excitations of fixed (maximum and minimum) size l. If the distribution of the energies of
these excitations on different length scales is independent of the length scale, then ΔEL is
just the minimum of ln L independent, identically distributed random numbers, and thus
proportional to 1/ lnL. What we show in our study is essentially that this assumption is
indeed fulfilled, as shown in figure 10. This is a non-trivial result and does not immediately
follow from a vanishing stiffness exponent, θ = 0. With a view towards their entropic
contribution one would like to know how the number of independent (i.e. spatially disjoint)
droplets scales with their size. It should be possible to study these challenging questions
with the methods that we presented.

Finally, we have shown that there is disorder chaos at T = 0 in this model.
Our numerical data show a behavior of interlayer correlations S12(q) compatible with
equation (24) with σ̂ > 0, and thus rather similar to the one obtained close to Tg [44].
Here, the two ground states of the system, embedded in two slightly different disorder
realizations, thus display logarithmic residual correlations. In addition, our data are
consistent with a chaos exponent α = 1, in agreement with the droplet scaling argument.
Following the studies of [34, 43, 45] it would certainly be interesting to describe these
behaviors analytically by means of a detailed analysis of the model in equation (23) at
T = 0. Of course, and especially in view of recent analytical progress [45], it would also
be very interesting to extend these studies of disorder chaos to finite temperature, which
we expect to play a role here in this marginal glass phase.
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