600 research outputs found

    Calx, a Na-Ca exchanger gene of Drosophila melanogaster

    Get PDF
    We have cloned Calx, a gene that encodes a Na-Ca exchanger of Drosophila melanogaster. Calx encodes two repeated motifs, Calx-α and Calx-β, that overlap domains required for exchanger activity and regulation. Calx has multiple transcripts in adults, including at least one expressed in the retina. The Calx genomic locus comprises ≥35 kb between the Atpα and rudimentary-like genes in chromosomal region 93B. In Xenopus oocytes, microinjected Calx cRNA induces calcium uptake like that of its homolog, the 3Na^+-1Ca^(2+) exchanger of mammalian heart. Implications of Calx-α motifs for the mechanism of Na-Ca exchange are discussed

    Multigenome DNA sequence conservation identifies Hox cis-regulatory elements

    Get PDF
    To learn how well ungapped sequence comparisons of multiple species can predict cis-regulatory elements in Caenorhabditis elegans, we made such predictions across the large, complex ceh-13/lin-39 locus and tested them transgenically. We also examined how prediction quality varied with different genomes and parameters in our comparisons. Specifically, we sequenced ∼0.5% of the C. brenneri and C. sp. 3 PS1010 genomes, and compared five Caenorhabditis genomes (C. elegans, C. briggsae, C. brenneri, C. remanei, and C. sp. 3 PS1010) to find regulatory elements in 22.8 kb of noncoding sequence from the ceh-13/lin-39 Hox subcluster. We developed the MUSSA program to find ungapped DNA sequences with N-way transitive conservation, applied it to the ceh-13/lin-39 locus, and transgenically assayed 21 regions with both high and low degrees of conservation. This identified 10 functional regulatory elements whose activities matched known ceh-13/lin-39 expression, with 100% specificity and a 77% recovery rate. One element was so well conserved that a similar mouse Hox cluster sequence recapitulated the native nematode expression pattern when tested in worms. Our findings suggest that ungapped sequence comparisons can predict regulatory elements genome-wide

    Transducing touch in Caenorhabditis elegans

    Get PDF
    Mechanosensation has been studied for decades, but understanding of its molecular mechanism is only now emerging from studies in Caenorhabditis elegans and Drosophila melanogaster. In both cases, the entry point proved to be genetic screens that allowed molecules needed for mechanosensation to be identified without any prior understanding of the likely components. In C. elegans, genetic screens revealed molecules needed for touch sensation along the body wall and other regions of force sensitivity. Members of two extensive membrane protein families have emerged as candidate sensory mechanotransduction channels: mec-4 and mec-10, which encode amiloride-sensitive channels (ASCs or DEG/ENaCs), and osm-9, which encodes a TRP ion channel. There are roughly 50 other members of these families whose functions in C. elegans are unknown. This article classifies these channels in C. elegans, with an emphasis on insights into their function derived from mutation. We also review the neuronal cell types in which these channels might be expressed and mediate mechanotransduction

    Molecular Beam Epitaxy of Si, Ge, and Sn and Their Compounds

    Get PDF
    In the past decade, the increasing need for high-performance micro- and nanoelectronics has driven the research on group IV heterostructure devices, which utilize quantum effects as dominant working principle. The compound semiconductor SiGeSn has presented itself as promising material system for group IV heterostructures due to its unique properties. Prominent applications range from the Si-integrated laser to tunneling field effect transistors for the next complementary metal oxide semiconductor generations. However, the epitaxy of heterostructures requires atomic sharp material transitions as well as high crystal quality, conditions where molecular beam epitaxy is the method of choice since it can take place beyond the thermodynamic equilibrium. Besides the numerous opportunities, the molecular beam epitaxy of SiGeSn poses various challenges, like the limited solid solubility of Sn in Si and Ge and the segregation of Sn. In this chapter, we discuss the molecular beam epitaxy of SiGeSn at ultra-low temperatures to suppress these effects

    The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify infection-specific gene families

    Get PDF
    Hookworms infect over 400 million people, stunting and impoverishing them. Sequencing hookworm genomes and finding which genes they express during infection should help in devising new drugs or vaccines against hookworms. Unlike other hookworms, Ancylostoma ceylanicum infects both humans and other mammals, providing a laboratory model for hookworm disease. We determined an A. ceylanicum genome sequence of 313 Mb, with transcriptomic data throughout infection showing expression of 30,738 genes. Approximately 900 genes were upregulated during early infection in vivo, including ASPRs, a cryptic subfamily of activation-associated secreted proteins (ASPs). Genes downregulated during early infection included ion channels and G protein–coupled receptors; this downregulation was observed in both parasitic and free-living nematodes. Later, at the onset of heavy blood feeding, C-lectin genes were upregulated along with genes for secreted clade V proteins (SCVPs), encoding a previously undescribed protein family. These findings provide new drug and vaccine targets and should help elucidate hookworm pathogenesis
    corecore