25,990 research outputs found

    Improving jet distributions with effective field theory

    Full text link
    We obtain perturbative expressions for jet distributions using soft-collinear effective theory (SCET). By matching SCET onto QCD at high energy, tree level matrix elements and higher order virtual corrections can be reproduced in SCET. The resulting operators are then evolved to lower scales, with additional operators being populated by required threshold matchings in the effective theory. We show that the renormalization group evolution and threshold matchings reproduce the Sudakov factors and splitting functions of QCD, and that the effective theory naturally combines QCD matrix elements and parton showers. The effective theory calculation is systematically improvable and any higher order perturbative effects can be included by a well defined procedure.Comment: 4 pages, 1 figure; typos corrected and notation updated to match hep-ph/060729

    Dynamical Inequality in Growth Models

    Full text link
    A recent exponent inequality is applied to a number of dynamical growth models. Many of the known exponents for models such as the Kardar-Parisi-Zhang (KPZ) equation are shown to be consistent with the inequality. In some cases, such as the Molecular Beam Equation, the situation is more interesting, where the exponents saturate the inequality. As the acid test for the relative strength of four popular approximation schemes we apply the inequality to the exponents obtained for two Non Local KPZ systems. We find that all methods but one, the Self Consistent Expansion, violate the inequality in some regions of parameter space. To further demonstrate the usefulness of the inequality, we apply it to a specific model, which belongs to a family of models in which the inequality becomes an equality. We thus show that the inequality can easily yield results, which otherwise have to rely either on approximations or general beliefs.Comment: 6 pages, 4 figure

    Upper critical dimension of the KPZ equation

    Full text link
    Numerical results for the Directed Polymer model in 1+4 dimensions in various types of disorder are presented. The results are obtained for system size considerably larger than that considered previously. For the extreme strong disorder case (Min-Max system), associated with the Directed Percolation model, the expected value of the meandering exponent, zeta = 0.5 is clearly revealed, with very week finite size effects. For the week disorder case, associated with the KPZ equation, finite size effects are stronger, but the value of seta is clearly seen in the vicinity of 0.57. In systems with "strong disorder" it is expected that the system will cross over sharply from Min-Max behavior at short chains to weak disorder behavior at long chains. This is indeed what we find. These results indicate that 1+4 is not the Upper Critical Dimension (UCD) in the week disorder case, and thus 4+1 does not seem to be the upper critical dimension for the KPZ equation

    Novel applications of the NASA/GSFC Viterbi decoder hardware simulator

    Get PDF
    The NASA/GSFC developed an all digital, real time, programmable Viterbi decoder simulator operating at rates up to 6 Msps. With this simulator, the bit error rate (BER) performance of convolutionally encoded/Viterbi decoded Shuttle-TDRSS return link channels under pulsed radio frequency interference (RFI) conditions has been predicted. The principles of the simulator are described with special emphasis on the channel simulator and the essential interaction between CLASS software and the simulator. The sensitivity of coded BER as function of several illustrative RFI parameters is discussed for two typical Shuttle-TDRSS return link configurations

    Discovery of a Jet-Like Structure at the High Redshift QSO CXOMP J084128.3+131107

    Full text link
    The Chandra Multiwavelength Project (ChaMP) has discovered a jet-like structure associated with a newly recognized QSO at redshift z=1.866. The system was 9.4 arcmin off-axis during an observation of 3C 207. Although significantly distorted by the mirror PSF, we use both a raytrace and a nearby bright point source to show that the X-ray image must arise from some combination of point and extended sources, or else from a minimum of three distinct point sources. We favor the former situation, as three unrelated sources would have a small probability of occurring by chance in such a close alignment. We show that interpretation as a jet emitting X-rays via inverse Compton (IC) scattering on the cosmic microwave background (CMB) is plausible. This would be a surprising and unique discovery of a radio-quiet QSO with an X-ray jet, since we have obtained upper limits of 100 microJy on the QSO emission at 8.46 GHz, and limits of 200 microJy for emission from the putative jet.Comment: 12 pages including 4 figures. Accepted for publication by ApJ Letter

    Electron Self Energy for Higher Excited S Levels

    Get PDF
    A nonperturbative numerical evaluation of the one-photon electron self energy for the 3S and 4S states with charge numbers Z=1 to 5 is described. The numerical results are in agreement with known terms in the expansion of the self energy in powers of Zalpha.Comment: 3 pages, RevTeX, to appear in Phys. Rev.

    Local formation of nitrogen-vacancy centers in diamond by swift heavy ions

    Full text link
    We exposed nitrogen-implanted diamonds to beams of swift uranium and gold ions (~1 GeV) and find that these irradiations lead directly to the formation of nitrogen vacancy (NV) centers, without thermal annealing. We compare the photoluminescence intensities of swift heavy ion activated NV- centers to those formed by irradiation with low-energy electrons and by thermal annealing. NV- yields from irradiations with swift heavy ions are 0.1 of yields from low energy electrons and 0.02 of yields from thermal annealing. We discuss possible mechanisms of NV-center formation by swift heavy ions such as electronic excitations and thermal spikes. While forming NV centers with low efficiency, swift heavy ions enable the formation of three dimensional NV- assemblies over relatively large distances of tens of micrometers. Further, our results show that NV-center formation is a local probe of (partial) lattice damage relaxation induced by electronic excitations from swift heavy ions in diamond.Comment: to be published in Journal of Applied Physic

    Effects of low energy electron irradiation on formation of nitrogen-vacancy centers in single-crystal diamond

    Full text link
    Exposure to beams of low energy electrons (2 to 30 keV) in a scanning electron microscope locally induces formation of NV-centers without thermal annealing in diamonds that have been implanted with nitrogen ions. We find that non-thermal, electron beam induced NV-formation is about four times less efficient than thermal annealing. But NV-center formation in a consecutive thermal annealing step (800C) following exposure to low energy electrons increases by a factor of up to 1.8 compared to thermal annealing alone. These observations point to reconstruction of nitrogen-vacancy complexes induced by electronic excitations from low energy electrons as an NV-center formation mechanism and identify local electronic excitations as a means for spatially controlled room-temperature NV-center formation
    • …
    corecore