34,552 research outputs found

    Relative potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications

    Get PDF
    The purpose of this study is to assess the relative economic potentials of concenrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R&D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options

    Atomic Beams

    Get PDF
    Contains a report on a research project

    MeV oxygen ion implantation induced compositional intermixing in AlAs/GaAs superlattices

    Get PDF
    We present in this letter an investigation of compositional intermixing in AlAs/GaAs superlattices induced by 2 MeV oxygen ion implantation. The results are compared with implantation at 500 keV. In addition to Al intermixing in the direct lattice damage region by nuclear collision spikes, as is normally present in low-energy ion implantation, Al interdiffusion has also been found to take place in the subsurface region where MeV ion induced electronic spike damage dominates and a uniform strain field builds up due to defect generation and diffusion. Uniform compositional intermixing of the superlattices results after subsequent thermal annealing when Al interdiffusion is stimulated through recovery of the implantation-induced lattice strain field, the reconstruction and the redistribution of lattice defects, and annealing of lattice damage

    Influence of substrate temperature on lattice strain field and phase transition in MeV oxygen ion implanted GaAs crystals

    Get PDF
    A detailed study of the influence of substrate temperature on the radiation-induced lattice strain field and crystalline-to-amorphous (c-a) phase transition in MeV oxygen ion implanted GaAs crystals has been made using channeling Rutherford backscattering spectroscopy, secondary ion mass spectrometry, and the x-ray rocking curve technique. A comparison has been made between the cases of room temperature (RT) and low temperature (LT) (about 100 K) implantation. A strong in situ dynamic annealing process is found in RT implantation at a moderate beam current, resulting in a uniform positive strain field in the implanted layer. LT implantation introduces a freeze-in effect which impedes the recombination and diffusion of initial radiation-created lattice damage and defects, and in turn drives more efficiently the c-a transition as well as strain saturation and relaxation. The results are interpreted with a spike damage model in which the defect production process is described in terms of the competition between defect generation by nuclear spikes and defects diffusion and recombination stimulated by electronic spikes. It is also suggested that the excess population of vacancies and their complexes is responsible for lattice spacing expansion in ion-implanted GaAs crystals

    In-flight calibration of the Herschel-SPIRE instrument

    Get PDF
    SPIRE, the Spectral and Photometric Imaging REceiver, is the Herschel Space Observatory's submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) covering 194–671 μm (447-1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrument using a combination of the emission from the Herschel telescope itself and the modelled continuum emission from solar system objects and other astronomical targets. We present the photometric, spectroscopic and spatial accuracy that is obtainable in data processed through the “standard” pipelines. The overall photometric accuracy at this stage of the mission is estimated as 15% for the photometer and between 15 and 50% for the spectrometer. However, there remain issues with the photometric accuracy of the spectra of low flux sources in the longest wavelength part of the SPIRE spectrometer band. The spectrometer wavelength accuracy is determined to be better than 1/10th of the line FWHM. The astrometric accuracy in SPIRE maps is found to be 2 arcsec when the latest calibration data are used. The photometric calibration of the SPIRE instrument is currently determined by a combination of uncertainties in the model spectra of the astronomical standards and the data processing methods employed for map and spectrum calibration. Improvements in processing techniques and a better understanding of the instrument performance will lead to the final calibration accuracy of SPIRE being determined only by uncertainties in the models of astronomical standards

    Subsets of R which support hypergroups with polynomial characters

    Get PDF
    AbstractIt is shown that if a hypergroup (H,∗), with H an infinite subset of R, has polynomial characters of every degree and if either H is compact or the polynomials are orthogonal with respect to a measure supported on H, then those polynomials are essentially the Jacobi polynomials. Related results are obtained for polynomial product formulas

    The antibody loci of the domestic goat (Capra hircus)

    Get PDF
    The domestic goat (Capra hircus) is an important ruminant species both as a source of antibody-based reagents for research and biomedical applications and as an economically important animal for agriculture, particularly for developing nations that maintain most of the global goat population. Characterization of the loci encoding the goat immune repertoire would be highly beneficial for both vaccine and immune reagent development. However, in goat and other species whose reference genomes were generated using short-read sequencing technologies, the immune loci are poorly assembled as a result of their repetitive nature. Our recent construction of a long-read goat genome assembly (ARS1) has facilitated characterization of all three antibody loci with high confidence and comparative analysis to cattle. We observed broad similarity of goat and cattle antibody-encoding loci but with notable differences that likely influence formation of the functional antibody repertoire. The goat heavy-chain locus is restricted to only four functional and nearly identical IGHV genes, in contrast to the ten observed in cattle. Repertoire analysis indicates that light-chain usage is more balanced in goats, with greater representation of kappa light chains (~ 20-30%) compared to that in cattle (~ 5%). The present study represents the first characterization of the goat antibody loci and will help inform future investigations of their antibody responses to disease and vaccination

    Fluids with quenched disorder: Scaling of the free energy barrier near critical points

    Full text link
    In the context of Monte Carlo simulations, the analysis of the probability distribution PL(m)P_L(m) of the order parameter mm, as obtained in simulation boxes of finite linear extension LL, allows for an easy estimation of the location of the critical point and the critical exponents. For Ising-like systems without quenched disorder, PL(m)P_L(m) becomes scale invariant at the critical point, where it assumes a characteristic bimodal shape featuring two overlapping peaks. In particular, the ratio between the value of PL(m)P_L(m) at the peaks (PL,maxP_{L, max}) and the value at the minimum in-between (PL,minP_{L, min}) becomes LL-independent at criticality. However, for Ising-like systems with quenched random fields, we argue that instead ΔFL:=ln(PL,max/PL,min)Lθ\Delta F_L := \ln (P_{L, max} / P_{L, min}) \propto L^\theta should be observed, where θ>0\theta>0 is the "violation of hyperscaling" exponent. Since θ\theta is substantially non-zero, the scaling of ΔFL\Delta F_L with system size should be easily detectable in simulations. For two fluid models with quenched disorder, ΔFL\Delta F_L versus LL was measured, and the expected scaling was confirmed. This provides further evidence that fluids with quenched disorder belong to the universality class of the random-field Ising model.Comment: sent to J. Phys. Cond. Mat
    corecore