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Abstract 

It is shown that if a hypergroup (H, ,), with H an infinite subset of N, has polynomial characters of every degree and if 
either H is compact or the polynomials are orthogonal with respect to a measure supported on H, then those polynomials 
are essentially the Jacobi polynomials. Related results are obtained for polynomial product formulas. 
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O. Introduction 

The authors are engaged in a program to identify and classify those families of orthogonal 
polynomials in one or several variables which satisfy a certain type of product formula. The most 
famous examples are the Chebyshev polynomials and the Legendre polynomials. 

The formulas of interest here are called hypergroup product formulas because such a formula 
gives rise in a natural way to a type of probability preserving measure algebra called a hypergroup. 
A family of orthogonal polynomials has a hypergroup product formula if and only if the 
homomorphisms of the hypergroup (which by the Riesz representation theorem are given by 
bounded functions) are given by the polynomials. (All these notions are discussed in detail below.) 

Two examples of families of polynomials which have product formulas not of hypergroup type 
are also described. 
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Whether or not a family of orthogonal polynomials has a hypergroup product formula depends 
in a strong way on the geometry of the support of the orthogonality measure. Of course, only some 
measures supported on such a set will yield orthogonal polynomials with the desired product 
formula. There are but a few (up to affine transformation) sets in each dimension which are at this 
time known to support such structures. A consequence of the results below is that the only such sets 
in N are compact intervals; the authors so far know of five (and their affine images) in N2 (these are 
discussed in [5]). 

The results presented here are essential for the authors' results in the more complicated 
two-variable case which is discussed in [5]; the sharpness of those results (and others in higher 
dimensions) depend in a strong way on the sharpness of the one-variable result. 

Now, one of the hypergroup axioms requires that the Banach algebra have an identity in the 
form of a unit point mass at some point e in H. It follows from a result in the article by the authors 
and Markett [3, Theorem 5.3] that the condition that H be a real interval can be weakened to 
require only that H be a subset of ~ and that e be an accumulation point of H. That article also 
contains a more detailed proof than the one given in [4]. (A similar result is also the essential 
content of [17, Theorem 5.3].) 

In this article we now remove all restrictions on the set H except that it be an infinite compact 
subset of ~ (Theorem 1); the hypothesis of compactness can be replaced by the assumption that the 
polynomials be orthogonal with respect to a measure on H. The plan of the paper is as follows: 
Section 1 which contains Theorem 1, also includes definitions and the example of the Jacobi 
polynomials. Section 2 is devoted to product formulas. Two additional examples of product 
formulas are given: the generalized Chebyshev polynomials and the continuous q-ultraspherical 
polynomials. These examples illuminate the conditions given in Theorems 2 and 3. Section 3 is 
devoted to the question of which hypergroups on {0, 1,2,... } have duals and contains a 
result which is an improvement on [17, Theorem 5.3]. Section 4 contains the proofs of 
Theorems 1-3. 

The situation for polynomials of two or more variables is richer. For instance, with one variable, 
a positive measure with finite moments determines a family of orthogonal polynomials which is 
unique up to multiplicative constants; with two or more variables, certain subspaces of poly- 
nomials are determined uniquely, but each subspace admits infinitely many different orthogonal 
bases. Nevertheless, the work here has been generalized to polynomials of two and more variables, 
and the results will be presented elsewhere. 

I. Hypergroups 

In this article, the term "hypergroup" is synonymous with "convo" as defined by Jewett [11, 
Section 4] and with the "DJS-hypergroup", a term recently coined by Litvinov and Ross 
(DJS = Dunkl, Jewett, Spector). 

Let H be a locally compact Hausdorff space, let M(H) denote the bounded regular real-valued 
Borel measures on H with I1" me denoting the total variation norm; we use Mp(H) for the probability 
measures on H. C(H) denotes the continuous functions on H, and Co(H) the members of C(H) 
with compact support. We write supp(#) for the support of/~ and 3, for the unit point mass 
supported at t. 
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If M(H) is a Banach algebra with multiplication • (usually called a convolution), then (H, ,) is 
a hypergroup if the following axioms hold (these are essentially identical to Jewett 's definition of 
a convo in [11]; that article should be consulted for the terminology used in the axioms). 

Axiom 1. A convolution of probabili ty measures is a probabili ty measure. 

Axiom 2. The mapping (p, v) --. p • v is positive-continuous from M(H) x M(H) into M(H). ( I f H  is 
compact,  this is equivalent to the mapping being w e a k - ,  continuous.) 

Axiom 3. There is an element e ~ H such that 6e * P = # * 6~ = # for every p e M(H). 

Axiom 4. There is a homeomorphic  mapping s --. s v of H into itself such that s ~ ~ = s and 
e ~ supp(6s * 6t) if and only if t -- s ' .  

Axiom 5. For  p, v ~ M ( H )  ( p  • v) v = v v ,  p ~, where p~ is defined by 

f n f ( s ) d , ~ ( s ) - - - f f ( s ~ ) d p ( s ) .  

Axiom 6. The mapping (s, t) ~ supp(6~ • 60 is continuous from H × H into the space of compact  
subsets of H as topologized in [13]; see [-6, 11, 14] for more about  hypergroups. 

A character for (H, ,) is a bounded continuous nonzero function 4 on H such that for every s e H, 

4) (s v) = q~ (s) and 

f c~d(6~,6t) = (o(s)~p(t) (s,t ~H), 

the set of characters is denoted b y / / ~ .  
We say ~ = {P,}.~o ([~o = {0, 1, 2,. . .  })is an algebraically complete family of polynomials if for 

every n ~ ~0,  P, has exact degree n. We say (H, ,) is a continuous polynomial hypergroup if H is 
a subset of ~ and i f / 4  ~ contains an algebraically complete family of polynomials. (The term 
continuous is used because these hypergroups are associated with the continuous variable x in p,(x); 
we will discuss the role of the discrete variable n below.) 

We say that ~ has a product formula on the set H c ~ if for each s and t in H, there is ~s,, ~ M(H) 
such that 

lip, dp~,t = p,(s)p.(t) (1) 

for every n ~ r~o. We say (1) is a positive product formula if#s,t is a nonnegative measure for every 
s, t e H .  

Two algebraically complete families of polynomials ~ -- {P.} ,~o and ~ = {q,} ,~o are linearly 
equivalent (written ~ ~ 2) if there are real numbers a and b such that q,(t) = p,(at + b) (n ~ No). We 
say two hypergroups (H, ,) and (K, o) with H, K c ~ are linearly equivalent (written (H, ,) ~ (K,o)) 
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if there is an affine function h(r) = ar + b with constants a # 0 and b such h(H) = K and 

for every f ~ C ( K )  where s = h- l (x )  and t = h-l(y) .  Clearly, if HA= ~ and K ~ = ~ ,  then 
(H, .) -~ (K, o) if and only if ~ ~ ~. 

Example 1 (Jacobi polynomials). An important  class of product formulas was established by 
Gasper [9] for the normalized Jacobi polynomials 

R J) (x) = / 

which are orthogonal with respect to a measure supported on [ - 1 ,  1] (see [9]). These include 
Chebyshev, Legendre, and ultraspherical or Gegenbauer polynomials as special cases. We write 

.~(~,~) = {R(,~,I~)(x)},~o 

for this system. The measures/~, ,  =/~s,t are all positive if and only if (c~,fi) belongs to 

gj  = {(~,fl): ~ ) fl > - -  1 and either fi ~> - ½  or c~ + fi >~ 0}. 

We note for later reference t h a t / < 1  = 5~ for every s e [ - 1 ,  1], and that (s,t) ~ supp(p~,t) is 
a continuous mapping. Actually, Gasper obtains explicit absolutely continuous measures Ps., for 

- 1 < s, t < 1, but the product formula is readily extended to - 1 ~< s, t ~< 1. (See Laine's comment  
[12, pp. 136-137].) Implicit in Gasper's article is that for each (~,fl) e Ej  there is a hypergroup, 
which we denote J(e, fl) with H = [ - 1, 1], e = 1, x v = x, and character set ~(~.t~). 

The following result completely describes the category of continuous polynomial hypergroups. 

T h e o r e m  1. Suppose that (H, .) is a hypergroup where H is an infinite subset of  ~ and that H~contains 
an algebraically complete family of polynomials ~ .  Assume one of the following holds. 

(i) H is compact. 
(ii) ~ is orthogonal with respect to a positive Borel measure on H. Then (H, ,) is linearly equivalent 

to J(c~, fi) for some (~, fi) ~ Ej. 

Remark 1. The requirement that H be infinite is inserted since there are finite hypergroups with 
polynomial characters (for instance, those associated with Krawtchouk polynomials [7] or the 
Chebyshev polynomials of degree ~<N on the set {x j: j = 0, ..., N}, where xj = cos(jn/N)). We 
cannot simply require that ~ contain infinitely many polynomials, for there is a hypergroup on 
H = [0, 1] with the set of even polynomials {R~'t~)(2x 2 - 1): n ~ N0} as characters. 

Remark 2. The hypergroup immediately above is equivalent by the nonlinear change of variables 
t = 2 x  2 - -  1 to J(e, fl). This suggests the following. 

Questions. (1) To what extent can the hypothesis of algebraic completeness be weakened if linear 
equivalence of hypergroups is replaced by a more general notion of equivalence? 

(2) If all the characters of a hypergroup are polynomials (but not necessarily including one of 
every degree) what can be concluded? 
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2. Product formulas 

Actually, the proof  of Theorem 1 does not  require all the hypergroup axioms. In this section we 
relate measure algebras to product  formulas and determine which algebraically complete  families 
of or thogonal  polynomials  have product  formulas of a prescribed type. For  instance we have: 

Theorem A [3, Theorem 5.3]. Suppose a family ~ of orthogonal polynomials has a positive product 
formula on a set H c ~ and satisfying the following two conditions. 

(i) There is e ~ H such that for every t E H, Pe, t is concentrated on a single point v(t). 
(ii) e is an accumulation point of H, and for every n > 2 and t ~ H 

lim - - 1  fH[r - v(t)]"dps, t(r) = O. 
s~e,s~H S -- e 

Then ~ _~ ~ ' ~  for some (~, fl) ~ Ej. 

(The condi t ion H c ~ is not explicitly stated in [3], but  it is required in the proof.) 
Assume that  an algebraically complete  family of polynomials  ~ = {P,},~No has a product  

formula on a set H, and assume that  there is A > 0 such that  I//~s,tll ~< A for every s, t ~ H. Define 
the operat ion • on M(H) as follows: if v and 2 e M(H), then v .  2 is defined by its action on 
f ~ Co(H) by 

f n f  d(v* 2) = fn  f H [ f n f  dl2s,t]dv(s)d2(t); (2) 

this is equivalent to setting 

6s * 6t = ,usa. (3) 

If we define 

= fnf i ,  dv (n e No) (4) v^(n) 

Eq. (2) entails 

(v • = ¢ 2 .  (5) 

Lemma 1. I f  H is compact, the operation * is commutative, associative, and continuous on M(H) with 
respect to the total variation norm. 

Proof. If f ~  

fnfd(6~*6y)=fnfd(6y*6~) (x, y e H ) ,  (6) 

so i f f  is any polynomial ,  it is in the linear span of 2 ,  hence Eq. (6) still holds for f. Finally, Eq. (6) is 
valid for each f ~  C(H) by the Stone-Weierstrass  Theorem.  Thus  cSx • 6 r = 6r • fix and commuta-  
tivity follows. A similar a rgument  establishes associativity. Eq. (2) leads directly to ]lv*2ll ~< 
AIIvlI" 11211. []  
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If (M(H), *) is a Banach algebra, we refer to it as the Banach alyebra associated with the product 
formula (1). If (M(H), *) is a hypergroup, we say that (1) is a hyperyroup product formula. 

We need another  definition: The product formula (1) has an identity element e if/~.e = 6~ for 
every t ~ H. 

Many algebraically complete families of polynomials have product  formulas; we cite two 
additional examples. 

Example 2 (Generalized Chebyshev polynomials). Laine [,121 established product formulas for the 
generalized Chebyshev polynomials given by 

~R~'~)(2x 2 - 1) if n = 2k, 

T?'/~)(x) = ~xR~'/J+~)(2x 2 -- 1) if n = 2k + 1, 

which are orthogonal on [ - 1, 1] with respect to the measure 

dm(~'/S)(x) = (1 - x2)~]xl 2a+ 1 

The product formula has identity element 1 and it is positive provided that e > fl/> - ½. Denoting 
• I~.~) (this is a different measure than in the measures in the product formula here also by/ts,  t = ~s.~ 

Example 1) we have/~.  1 = 6s. (Actually, Laine obtains explicit absolutely continuous measures/~s,t 
for - 1 < s, t < 1, st ~ 0 but the product formula is readily extended to - 1 ~< s, t ~< 1.) We also 
note that if f l >  - ½  and - 1  < s , t <  1 then supp(/~.t) is a set symmetric about 0 (see [12, 
Eq. (2.2)]); thus the measure algebra associated with the generalized Chebyshev polynomials does 
not satisfy hypergroup Axioms 4 and 6, so it is not a hypergroup. However, LI([ - --1, 1], m (~'p)) is 
a hypercomplex system in the sense of Berezanskii and Kalyuzhnyi ([2, Theorem 3.7, p. 216]). 

Example 3 (Continuous q-ultraspherical polynomials). These polynomials introduced in [1] are 
denoted Cn(x;fllq). We fix fl and q in (0, 1). The continuous q-ultraspherical polynomials are 
orthogonal with respect to a measure with support [ , - 1 ,  11. The normalized continuous q- 
ultraspherical polynomials are defined by 

R,(x;filq) = C,(x;fllq)/C,(e;fllq) (n6 ~o), 

where 

e = (fll/2 + fl-1/2)/2 > 1. 

These have a product formula on [ , -1 ,11  (see [,10, Eq. (8.4.1)1 and [,1, Eq. (3.23)]) with 
• f l ] q  nonnegative measures ~s,t = ~s,t with the property that 

s u p p ( / ~ s , t ) = [ - 1 , 1 ]  (s, t E [ , -1 ,11) .  (7) 

The product formula can be extended to H = [, - 1 ,  11 w{ +e} by defining 

/~e,t = 6t and #-e,t  = c5_~; 

e is the identity element for this product  formula. The measure algebra associated with the 
q-ultraspherical polynomials is not a hypergroup because for - 1 ~< s ~< 1, there is no s v which 
satisfies Axiom 4. 
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Theorems 2 and 3 give characterizations of the Jacobi polynomials  in terms of their p roduct  
formulas. Each theorem contains a set of condi t ions (labeled "B") on a product  formula which are 
weaker than the assumpt ion  that  the Banach algebra associated with the product  formula is 
a hypergroup.  The condit ions in Theorem 3 are more  general, but  more  technical than  those in 
Theorem 2. Theorem 3 contains Theorem 2 as a special case. We shall use the notation:  
N~,(t) = (t --e, t +e). 

Theorem 2. The following are equivalent for  an algebraically complete family ~ of  orthogonal 
polynomials. 

(A) ~ _-__ ~ ' ~ )  for some (~, fl) ~ Ej.  
(B) ~ has a positive product formula on an infinite compact set H ~ ~ with identity e that satisfies 

the following two conditions: 
(i) corresponding to every t ~ H and e > O there is q > O such that if s~  N , ( e ) n H  then 

supp(/zs, t) = N~:(t), and 
(ii) for  every t ~ H, e ~ supp(pt,t). 

Remark 1. That  condi t ion (i) is required can be shown by considering the case of the generalized 
Chebyshev polynomials  (Example 2) with 7 >~/3 > - ½ .  In this case, if - 1  < s,t  < 1, then 
supp(/~s,t) is symmetric  about  0, while s u p p ( p l , t ) =  s u p p ( f t ) =  {t}, thus supp(p~,~) does not  
converge to {t} in the space of compact  subsets of H as s ~ e. 

Remark 2. That  condi t ion (ii) is required is shown by the example of the cont inuous  q-ultraspheri- 
cal polynomials,  because if t c [ - 1 ,  1], then eCsupp(#~,t) = [ - 1 ,  1]. 

We need an addit ional  definition for Theorem 3: If A and B are subsets of H, then A. B is the 
closure of ~ {supp(p~.t): s ~ A and t ~ B}. 

Theorem 3. The following are equivalent for an algebraically complete family ~ of  orthogonal 
polynomials. 

(A) ~ ~ ~(~'~) for  some (~, fl) ~ Ej.  
(B) ~ has a positive product formula on an infinite compact set H ~ ~ with identity element e that 

satisfies the following two conditions: 
(i) for  every n > 2 and t E H 

lim - - 1  f n ( r - t ) " d # ~ ' t ( r ) = O ' a n d  
s--*e, s~H S - -  e 

(ii) the only nonempty compact subset K of  H which satisfies K" H ~ K is K =H.  

Remark 3. In the case of the cont inuous  q-ultraspherical polynomials  (Example 3), K = [ - 1, 1] 
has the proper ty  that  K ¢ H but  K.  H c K. 

3. Discrete polynomial hypergroups and duality 

A family ~ = {P .} .~o  of or thogonal  polynomials  may also play the role of characters of 
a hypergroup  (No, °), which we denote  No(~), by defining a product  o on f l ( = M ( N o ) )  with the 
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property that if u and v belong to E 1 

for all x such that {p,(x)} is bounded. We use the term discrete polynomial hypergroup to refer to 
such structures in contrast to the continuous polynomial hypergroups defined above. Many 
researchers reserve the term "polynomial hypergroups" to this class of objects. There are discrete 
polynomial hypergroups which we denote by J ~ ,  fi) associated with the Jacobi polynomials for 
(~, fl) belonging to a strictly larger set than Es (see [-9]). If (~, fl) ~ E j, we can say that J(c~, fl) and 
J(c~,/3) have each other as dual hypergroups. There are also discrete polynomial hypergroups 
associated with the generalized Chebyshev polynomials (Szwarc [16]), and the q-continuous 
ultraspherical polynomials for 0 < 1/31, q < 1 (see [10, Section 8.5] and the references given there). 
In fact, the category of discrete polynomial hypergroups is quite large; for instance, Szwarc [15, 16] 
gives simple conditions on the recurrence relation for a family ~ of orthogonal polynomials which 
ensure that No(~) is a hypergroup. This is in contrast to the category of continuous polynomial 
hypergroups which is completely described by Theorem 1. Consequently, most discrete polynomial 
hypergroups will not support a theory of harmonic analysis which relies on any analog for 
hypergroups of Pontryagin duality. Indeed, Zeuner [17] offers an answer to the question: 

Which discrete polynomial hypergroups No(~) have the property that there is a continuous 
polynomial hypergroup (H, *) with characters 2?  

His answer ([ 17, Theorem 5.3]) is that if the identity element e is not an isolated point of H, then 
No(~) = J'(e,/3) for some (c~,/3)e Ej. Theorem 1 has the effect of removing the topological 
restriction to yield: 

Theorem 4. I f  No(~) is a discrete polynomial hypergroup, and if there is a continuous polynomial 
hypergroup (H, .) with H an infinite subset of  ~ and I- f  ~ ~ ,  then N o ( ~ ) =  J"(c~,fl) for some 
(~X, fl) G E j .  

In other words, the only discrete polynomial hypergroups which have dual hypergroups in any 
sense of the word are J'(c~, fl) for (~, fl) belonging to Ej. 

4. Proof of Theorems 1-3 

We begin with a technical lemma. 

Lemma 2. Suppose the family of  polynomials ~ has a positive product formula on H c ~ with 
identity e, and suppose that corresponding to every t ~ H and ~ > 0 there is q > 0 such that 

supp(/~a ) c N~(t) (s ~ N~(e)mH), (8) 

then for every n > 2 and t ~ H 

lim - - 1  f ( r -  t)"d#~,t(r) = 0. 
s--*e, sell S --  e Jn 
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Proof. Let 

M,(s , t )  = [" (r -- t)"dps, t(r), 

and suppose that n > 0, then M,(e,  t) = 0. Now, since we can write 

(r - t) n = ~, Ck(t)pk(r), 
k = 0  

we use the fact that each Pk is a character to see that 

M,(s , t )  = ~, Ck(t)pk(S)pk(t) 
k = 0  

is a polynomial which satisfies Mn(e, t) = 0. Thus 

M . ( s ,  t) = (s - e )O_. (s ,  t) 

for some polynomial Q. Now if n > 2 and e > 0, we have 

Mn(s, t) = fH(r -- t)"-2(r -- t) 2 dps, t(r). 

The hypotheses imply that there is t / >  0 such that [s - e[ < t/yields 

IM,(s, t)l ~< e"-2M2(s, t) = e"-2l(s - e)O2(s, t)l, 

and the lemma follows. [] 

Proof  of Theorem 1. Let (H, .) be a hypergroup, and let ~ be an algebraically complete family of 
polynomials contained in H. We begin with the assumption that H is an infinite compact  subset of 
~. The first part of the proof is to show that the hypotheses of Theorem A are satisfied with v(t) = t. 
This will require three steps: (1) ~ is an orthogonal family, (2) e is an accumulation point of H, and 
(3) the limit relation in condition (ii) of Theorem A holds. 

Step 1: Since (H, .) is compact,  it has a Haar  measure m and supp(m) = H [11, Theorem 7.2A]. 
We now show that m is the orthogonali ty measure for ~ .  The following relation holds for f and g in 
C(H) (this is a simple extension of [11, Theorem 5.1D]): 

Suppose that f and g are distinct Hermitian characters so that ~ is also a Hermitian character and 
SO 

n f ( x  f ( y )O(y )dm(y )  = fH f (Y)g(xV)O(y)dm(y) '  

whence 

[ f (x )  - g(x)] f n  f(Y)g(Y)din(y) = 0 

and the orthogonali ty of ~ follows. 
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Step 2: Ife  is isolated, then H is discrete ([-11, Theorem 7.1B]), but this is impossible since H is an 
infinite compact  set. 

Step 3: If e > 0, then if U = N~(t)~H 

c~v(U) = {C: C is a compact  set in H such that C c N~,(t)} 

is a neighborhood of {t} in the topology of compact  subsets of H [11, Section 2.5]. Thus there is 
t / >  0 such that (8) holds and so the limit relation in (A) follows from Lemma 2. Thus we invoke 
Theorem A to conclude that ~ _-__ ~(~,  fl). 

We must still show that (H, ,) and J(~,fl) are equivalent. Since ~ ~ ~(~,fl), there will be no loss 
of generality in assuming that ~ = ~(~,  fl). The family ~(e ,  fl) is orthogonal with respect to the 
Haar  measure of both (H, ,) and J(e, fl), hence H = [- - 1, 1]. Now, with o denoting the convolution 
for J(~,fl) we have for all p e ~ '  that ~pd(6x*6y)=p(x)p(y )=~pd(6: `o6y) ,  so , = o  and 
( H , , )  = 

Instead of asserting H to be compact,  let us assume that ~ is orthogonal  with respect to some 
I~ ~ M(H). Since (H, ,) has polynomial characters and any character  must be a bounded function, 
the only way that a polynomial can be bounded on H is for H to be a bounded set. Thus/~ has 
compact  support. Hence for each x ~ H,/2 • 3:, has compact  support (see [ 11, (3.2G)]), and for each 
n > 0  

fp.d(l *6x)= fp.dl , 
while for n = 0 (since Po --- 1) 

fpod( ,6x)= (fpod )po(x)= fpod  
thus # • 6x = / t  by the Stone-Weierstrass Theorem, and similarly 6x * ~ = #, so # is Haar  measure 
and it is finite. Since Haar  measure is finite, H is compact  ([11, Theorem 7.2B]), and the result 
follows by Steps 2 and 3. []  

Proof of Theorem 3. Suppose that (B) holds. Theorem A yields the conclusion under the hypothesis 
that the element e is an accumulation point of H. Theorem 3 will be proved by showing that this is 
the case. 

The Banach algebra (M(H), ,) associated with the product formula is not immediately a hyper- 
group but it does satisfy the axioms of the more general type of measure algebra which Dunkl  calls 
a hypergroup in [6]. It follows from [6, Theorem 1.12] that there is a positive measure m of unit 
total variation which satisfies m • 6t = m for every t 6 H, and that K = supp(m) is the smallest 
compact  subset of H such that K.  H c H. Thus (ii) implies that supp(m) -- H. We claim m is also 
the spectral measure for ~ .  

For  v e M(~)  define 

v~(n) = fp. dv (n ~ N o). 



W.C. Connett, A.L, Schwartz~Journal of Computational and Applied Mathematics 65 (1995) 73-84 83 

Let/~ be the spectral measure  of ~' normal ized  to uni t  total  variat ion.  Then  ~(0) = 1 and  if(n) = 0 
for n > 1. Observe 

m^(n)= fup ,  d m =  f p, d(m*6,) 

= (f p.dm)(f P.d(6,))= m (̂n)p.(t), 
so tha t  m^(n) =/~^(n) for every n • No, thus  m = p. 

N o w  assume by way of cont rad ic t ion  tha t  e is an isolated point  of H. Since e is isolated in 
H = supp(m), it follows tha t  0 < 7 = m({e}) < 1. Let  H '  = H - {e} and  define f by sett ing f(e) = 0 
and f (x )  = 1 if x • H'.  Then  the Plancherel  Theorem yields: 

fu l f l 2 d m =  Z [f^(n)lZh,, 
nENo 

where 

f'(n) = fu  f~" dm and 

(9) 

h, = ]p,[2 dm 

N o w  observe tha t  since [i/~s,t li = 1, the p roduc t  formula  yields [b P, ]] ~ ~< I] P. ]1 ~ so that  ]] P, ]] 00 ~< 1 
for all n • No. Thus  h, >~ 1. N o w  for n > 0, we have 

O---f,p. dm=7+f, p.dm=v+f (n), 
so f^(n) = - 7 and  the required cont rad ic t ion  is obta ined  because the lef t-hand side of (9) is finite 
but  r igh t -hand  side diverges. [ ]  

Proof of Theorem 2. We will show tha t  condi t ions  (B) of Theorem 2 imply condi t ions  (B) of 
Theorem 3. L e m m a  2 shows tha t  condi t ion  (i) of Theorem 2 implies (i) of Theorem 3. 

To establish (ii) of Theorem 3, assume condi t ion  (ii) of Theorem 2 holds,  and  tha t  K .  H = K for 
some K with 0 : ~ K c H .  Let  t • K ,  then e • s u p p ( p t , t )  so e • K - H ,  hence e • K ,  and  so 
K = K ' H  =H. [] 
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