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A. THEORY OF ATOMIC HYPERFINE STRUCTURE

A program of calculation of some atomic wavefunctions has been undertaken - using

M. I. T. 's Whirlwind computer - in order to arrive at an accurate evaluation of the elec -

tronic matrix elements occurring in the theoretical formulas for atomic hyperfine

structure (hfs).

1. Description of the Problem

Experimental observations, by optical or radio-frequency measurements, of the

hyperfine structure of some atomic state are summarized by giving the values of the

interaction constants, a, b, c, that represent the contribution of each multipole order to

the level splittings. According to the theory each one of these interaction constants

equals the product of a particular nuclear moment and an electronic matrix element.

Thus, in order to find the nuclear moment accurately we must be able to evaluate the

electronic matrix element accurately.

In the usual description of an atom most of the electrons are in closed shells of the

core, and only one, or a few, electrons in the unfilled valence shell give rise to such

angular properties as the hyperfine structure. This description is not rigorously

correct, since the core is slightly distorted by the unsymmetrical motion of the valence

electrons, and thus all the electrons do contribute something to the hyperfine structure.

This many-particle aspect of the problem has been studied extensively by Sternheimer

(1), but the exact magnitude of these corrections is not yet certain. The problem we

are concerned with is that of calculating accurately the contribution of the valence

electron(s) alone.

The best evaluation of these one-electron matrix elements previously given is that

of Casimir (2). His approximation proceeds as follows. Since the integrals to be eval-

uated are of the form r 3, the most important contribution will come from the region

of small r. Thus one needs to know the electronic wavefunction only in the region very

close to the nucleus. Then by using the relativistic (Dirac) wavefunctions for an electron

in a pure coulomb field at zero binding energy the various hfs integrals are evaluated

analytically.

The first correction to this approximation would come from the effect of the shielding

by all the other electrons on the wavefunction of the valence electron. If the total elec-

trostatic potential of the atom is expanded in a power series about r = 0, the first term

is of course +Ze/r where Ze is the nuclear charge. The second term is the constant

shielding potential of all the electrons, which may be estimated from the Thomas-Fermi
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model as -1.8Z 4  e/a, where ao is the Bohr radius. These two terms of the total

potential lead to an electronic wavefunction which in the region of small r may be

described as a coulomb eigenfunction corresponding to a principal quantum number of

n ~Z1/3/1.9 < 2; the Casimir approximation corresponds to n = 0. This discrepancy

in the wavefunctions is the reason for our present work.

Our program is to carry out the numerical integration of the one-electron Dirac wave

equation with a potential that represents the entire atomic field, and then to calculate the

integrals of interest in the study of hyperfine structure. The big problem is the choice

of the potential. We have used a potential fashioned after a simple functional form dis-

covered by Tietz (3) as an accurate approximation to the Thomas-Fermi function. We

take

V = e [1 + (Z-l)/(1 + r)2
r

as the potential seen by one electron in a neutral atom. The constant P is treated as a

parameter which is so chosen that it will yield the best fit to the experimentally

measured term values and fine structure for each atomic state calculated.

2. Calculations

The equations to be solved are

d K CL C

dr r a 2 E+e g

d- +  g a V) f

dr r 2 e

where f and g are the radial eigenfunctions for the large and small components of the

Dirac state vector, r is the distance from the nucleus measured in units of a , a = 1/137,

K is an angular momentum quantum number, and E is the energy eigenvalue measured

in Rydbergs = e 2 /2a . The integration of these equations is carried out by Whirlwind I

by means of well-known numerical techniques.

First, with some given value of p (the potential parameter) the differential equa-

tions are integrated several times until the eigenvalue E is found by a trial-and-error

procedure. Then the normalization integral

(f+ g2) dr

and the integrals of interest for hfs problems
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00 00 00

(f +g) r-3 dr, f g r-2 dr, f g r dr

0 0 0

are calculated using the eigenfunctions. Also, the difference of the eigenvalues E for

two states of a doublet is just the fine-structure splitting 6. The entire calculation is

repeated for another value of P, and the final results for all the quantities of interest are

taken by interpolation at that value of p which best reproduces the experimental values

of E, 5, andf f g r 2 dr (which is fairly well-known from the hyperfine-structure a

and the nuclear dipole moment). This routine requires about 1.5 hours of machine com-

putation time for each doublet state.

3. Results and Future Plans

These calculations have been completed for the normal terms of Ga, In, Tl; and

work is now in progress to do the same for Al, Cl, Br, I, and the second excited p-

state of Cs. From the results thus far we find that ratios between the dipole and quad-

ripole integrals and the fine-structure 6 are only slightly different from the values

given by Casimir's work. This happens because all of these depend mainly on the same

quantity, r-3 ; and most of the large error in the wavefunction cancels out in ratios.

However, the octopole integrals depend onr -5 , and we find that these are consider-

ably smaller than the values given by Casimir's approximation. As a result, the nuclear

magnetic octopole moments in Ga and In are now found to be 20-25 per cent larger than

those given in the previous evaluation (4).

It is also believed that some of the results of these calculations will help shed light

on the many-electron (core polarization) problem. A thorough report and an evaluation

of the completed calculations will be prepared for later publication.

C. L. Schwartz

References

i. R. Sternheimer, Phys. Rev. 95, 736 (1954).

2. H. B. G. Casimir, On the Interaction Between Atomic Nuclei and Electrons
(Teyler's Tweede Genootschap, Haarlem, 1936).

3. T. Tietz, J. Chem. Phys. 22, 2094 (1954).

4. C. Schwartz, Phys. Rev. 97, 380 (1955).


