516 research outputs found

    Defenders of Wildlife v. Zinke

    Get PDF
    Wyoming was the final holdout of protections for wolves under the Endangered Species Act, and a recent decision by the United States Circuit for the District of Columbia has finally overturned those protections. After years of court battles, this decision marks the final adjudication removing federal protections, and places the management of the wolves in the Greater Yellowstone Area back in the hands of the states surrounding Yellowstone National Park. Complete deference to state regulatory systems may be a new trend in the adjudication of cases under the ESA, and this case could have significant impacts on future deference given to state management plans

    National Wildlife Federation v. National Marine Fisheries Service

    Get PDF
    The tide in the legal battle surrounding anadromous fish protections in the Columbia River watershed most recently swung in favor of the fish. In the latest iteration of National Wildlife Federation v. National Marine Fisheries Service, the Court found in a lengthy opinion that NOAA fisheries acted arbitrarily and capriciously when it issued its 2014 BiOp concluding that the FCRPS did not violate the ESA. The Court also ruled that the Corps violated NEPA by failing to prepare an environmental impact statement in connection with their records of decision implementing reasonable and prudent alternatives in the BiOp. This decision could open the floodgates to changes in hydropower management along the Columbia River watershed

    The changes in leaf reflectance of sugar maple seedlings (Acer saccharum Marsh) in response to heavy metal stress

    Get PDF
    The effects of heavy metal stress on leaf reflectance of sugar maple seedlings (Acer saccharum Marsh) are examined. It is found that sugar maple seedlings treated with anomalous amounts of heavy metals in the rooting medium exhibited an increased leaf reflectance over the entire range of investigated wavelengths, from 475 to 1650 nm. These results conform to those of a previous investigation in the wavelengths from 475 to 660nm, but tend to contradict the previous study in the near infrared wavelengths from 1000 to 1650nm. The differences may possible be due to different water regimes in the two investigations

    NASA's Global Precipitation Mission Ground Validation Segment

    Get PDF
    NASA is designing a Ground Validation Segment (GVS) as one of its contributions to the Global Precipitation Measurement (GPM) mission. The GPM GVS provides an independent means for evaluation, diagnosis, and ultimately improvement of the GPM spaceborne measurements and precipitation products. NASA's GPM GVS concept calls for a combination of direct observations executed within a Multidimensional Observing Volume (MOV) and model-based analyses executed by a Satellite Simulator Model (SSM). The MOV consists of ground-based instruments that measure local surface and atmospheric properties required for GPM validation. The SSM utilizes MOV measurements in a forward numerical model. The goal of the SSM forward modeling is calculation of the following properties: top-of-atmosphere microwave radiative quantities to within sensor noise of those measured by the GPM Core Satellite, precipitation quantities identical to those generated by the standard GPM precipitation retrieval algorithms, and quantitative/objective error estimates of both sets of quantities. At present, the GVS is in the early design stage and various scenarios have been generated to assess how it will be used in the GPM era. The GPM GVS will be operational in the year prior to the launch of the GPM core satellite, which has a launch date scheduled for December 2010

    Sensitivity of Spaceborne and Ground Radar Comparison Results to Data Analysis Methods and Constraints

    Get PDF
    With the availability of active weather radar observations from space from the Precipitation Radar (PR) on board the Tropical Rainfall Measuring Mission (TR.MM) satellite, numerous studies have been performed comparing PR reflectivity and derived rain rates to similar observations from ground-based weather radars (GR). These studies have used a variety of algorithms to compute matching PR and GR volumes for comparison. Most studies have used a fixed 3-dimensional Cartesian grid centered on the ground radar, onto which the PR and GR data are interpolated using a proprietary approach and/or commonly available GR analysis software (e.g., SPRINT, REORDER). Other studies have focused on the intersection of the PR and GR viewing geometries either explicitly or using a hybrid of the fixed grid and PR/GR common fields of view. For the Dual-Frequency Precipitation Radar (DPR) of the upcoming Global Precipitation Measurement (GPM) mission, a prototype DPR/GR comparison algorithm based on similar TRMM PR data has been developed that defines the common volumes in terms of the geometric intersection of PR and GR rays, where smoothing of the PR and GR data are minimized and no interpolation is performed. The PR and GR volume-averaged reflectivity values of each sample volume are accompanied by descriptive metadata, for attributes including the variability and maximum of the reflectivity within the sample volume, and the fraction of range gates in the sample average having reflectivity values above an adjustable detection threshold (typically taken to be 18 dBZ for the PR). Sample volumes are further characterized by rain type (Stratiform or Convective), proximity to the melting layer, underlying surface (land/water/mixed), and the time difference between the PR and GR observations. The mean reflectivity differences between the PR and GR can differ between data sets produced by the different analysis methods; and for the GPM prototype, by the type of constraints and categorization applied to the data. In this paper, we will show results comparing the 3-D gridded analysis "black box" approach to the GPM prototype volume-matching approach, using matching TRMM PR and WSR-88D ground radar data. The affects of applying data constraints and data categorizations on the volume-matched data to the results will be shown, and explanations of the differences in terms of data and analysis algorithm characteristics will be presented. Implications of the differences to the determination of PR/DPR calibration differences and use of ground radar data to evaluate the PR and DPR attenuation correction algorithms will be discussed

    Data Visualization and Analysis Tools for the Global Precipitation Measurement (GPM) Validation Network

    Get PDF
    The Validation Network (VN) prototype for the Global Precipitation Measurement (GPM) Mission compares data from the Tropical Rainfall Measuring Mission (TRMM) satellite Precipitation Radar (PR) to similar measurements from U.S. and international operational weather radars. This prototype is a major component of the GPM Ground Validation System (GVS). The VN provides a means for the precipitation measurement community to identify and resolve significant discrepancies between the ground radar (GR) observations and similar satellite observations. The VN prototype is based on research results and computer code described by Anagnostou et al. (2001), Bolen and Chandrasekar (2000), and Liao et al. (2001), and has previously been described by Morris, et al. (2007). Morris and Schwaller (2009) describe the PR-GR volume-matching algorithm used to create the VN match-up data set used for the comparisons. This paper describes software tools that have been developed for visualization and statistical analysis of the original and volume matched PR and GR data

    Quantitative Topographical Characterization of Thermally Sprayed Coatings by Optical Microscopy

    Get PDF
    Topography measurements and roughness calculations for different rough surfaces (Rugotest surface comparator and thermally sprayed coatings) are presented. The surfaces are measured with a novel quantitative topography measurement technique based on optical stereomicroscopy and a comparison is made with established scanning stylus and optical profilometers. The results show that for most cases the different methods yield similar results. Stereomicroscopy is therefore a valuable method for topographical investigations in both quality control and research. On the other hand, the method based on optical microscopy demands a careful optimization of the experimental settings like the magnification and the illumination to achieve satisfactory result

    NASA's NPOESS Preparatory Project Science Data Segment: A Framework for Measurement-based Earth Science Data Systems

    Get PDF
    The NPOESS Preparatory Project (NPP) Science Data Segment (SDS) provides a framework for the future of NASA s distributed Earth science data systems. The NPP SDS performs research and data product assessment while using a fully distributed architecture. The components of this architecture are organized around key environmental data disciplines: land, ocean, ozone, atmospheric sounding, and atmospheric composition. The SDS thus establishes a set of concepts and a working prototypes. This paper describes the framework used by the NPP Project as it enabled Measurement-Based Earth Science Data Systems for the assessment of NPP products

    Prototype of NASA's Global Precipitation Measurement Mission Ground Validation System

    Get PDF
    NASA is developing a Ground Validation System (GVS) as one of its contributions to the Global Precipitation Mission (GPM). The GPM GVS provides an independent means for evaluation, diagnosis, and ultimately improvement of GPM spaceborne measurements and precipitation products. NASA's GPM GVS consists of three elements: field campaigns/physical validation, direct network validation, and modeling and simulation. The GVS prototype of direct network validation compares Tropical Rainfall Measuring Mission (TRMM) satellite-borne radar data to similar measurements from the U.S. national network of operational weather radars. A prototype field campaign has also been conducted; modeling and simulation prototypes are under consideration
    corecore