74 research outputs found

    Hydronephrosis Resulting from Bilateral Ureteral Stenosis: A Late Complication of Polyoma BK Virus Cystitis?

    Get PDF
    We report here a case of acute lymphoblastic leukemia in remission presenting a late-onset bilateral hydronephrosis probably due to polyoma BK virus-induced proliferation of bladder endothelium on both ostii. The diagnosis was made virologically by BK virus Polymerase Chain Reaction (PCR) detection in the absence of any other bladder disease. Awareness of this late complication is necessary not only in patients after renal transplantation but also in patients after hematopoietic stem cell transplantation from matched unrelated donor

    Gas hydrate on the northern Cascadia margin: regional geophysics and structural framework

    Get PDF
    Integrated Ocean Drilling Program Expedition 311 is based on extensive site survey data and historic research at the northern Cascadia margin since 1985. This research includes various regional geophysical surveys using a broad spectrum of seismic techniques, coring and logging by the Ocean Drilling Program Leg 146, heat flow measurements, shallow piston coring, and bottom video observations across a cold-vent field, as well as novel controlled-source electromagnetic and seafloor compliance surveying techniques. The wealth of data available allowed construction of structural cross-sections of the margin, development of models for the formation of gas hydrate in an accretionary prism, and estimation of gas hydrate and free gas concentrations. Expedition 311 established for the first time a transect of drill sites across the northern Cascadia margin to study the evolution of gas hydrate formation over the entire gas hydrate stability field of the accretionary complex. This paper reviews the tectonic framework at the northern Cascadia margin and summarizes the scientific studies that led to the drilling objectives of Expedition 311 Cascadia gas hydrate

    Correction of seafloor magnetotelluric data for topographic effects during inversion

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): B12105, doi:10.1029/2004JB003463.The large contrast in electrical conductivity between seawater and the underlying seafloor accumulates boundary electric charges which can severely distort observed electric and magnetic fields. For marine magnetotelluric (MT) studies, correcting this topographic effect is critical to obtaining accurate conductivity models for the mantle. Previously, correction for topography was based on the thin sheet approximation which breaks down at periods under ∌1000 s in the deep ocean. This paper introduces an analysis method for seafloor MT data which combines removal of three-dimensional (3-D) topographic effects with inversion of the data for 2-D structure. The observed MT impedance is first corrected to a flat-lying seafloor datum using the observed bathymetry without invoking the thin sheet approximation. The corrected MT response is then inverted in a flat seafloor model space. Because of coupling between topographic effects and deeper structure, the correction and inversion steps are iterated until changes in each become small. The procedure is verified using synthetic and real data. Tests for synthetic 3-D topography over a half-space show that the method closely recovers the true half-space model after a few iterations. The procedure is also applied to real data collected in the Mantle Electromagnetic and Tomography (MELT) experiment on the East Pacific Rise at 17°S.This work was supported by NSF grants OCE9402324 and OCE0118254 and Research Program on Mantle Core Dynamics, Institute for Research on Earth Evolution (IFREE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
    • 

    corecore