398 research outputs found
Effect of lactoperoxidase on the antimicrobial effectiveness of the thiocyanate hydrogen peroxide combination in a quantitative suspension test
<p>Abstract</p> <p>Background</p> <p>The positive antimicrobial effects of increasing concentrations of thiocyanate (SCN-) and H<sub>2</sub>O<sub>2 </sub>on the human peroxidase defence system are well known. However, little is known about the quantitative efficacy of the human peroxidase thiocyanate H<sub>2</sub>O<sub>2 </sub>system regarding Streptococcus mutans and sanguinis, as well as Candida albicans. The aim of this study was to evaluate the effect of the enzyme lactoperoxidase on the bactericidal and fungicidal effectiveness of a thiocyanate-H<sub>2</sub>O<sub>2 </sub>combination above the physiological saliva level. To evaluate the optimal effectiveness curve, the exposure times were restricted to 1, 3, 5, and 15 min.</p> <p>Results</p> <p>The bactericidal and fungicidal effects of lactoperoxidase on Streptococcus mutans and sanguinis and Candida albicans were evaluated by using two test mixtures of a 2.0% (w/v; 0.34 M) thiocyanate and 0.4% (w/v; 0.12 M) hydrogen peroxide solution, one without and one with lactoperoxidase. Following the quantitative suspension tests (EN 1040 and EN 1275), the growth of surviving bacteria and fungi in a nutrient broth was measured. The reduction factor in the suspension test without lactoperoxidase enzyme was < 1 for all three tested organisms. Thus, the mixtures of 2.0% (w/v; 0.34 M) thiocyanate and 0.4% (w/v; 0.12 M) hydrogen peroxide had no in vitro antimicrobial effect on Streptococcus mutans and sanguinis or Candida albicans. However, the suspension test with lactoperoxidase showed a high bactericidal and fungicidal effectiveness in vitro.</p> <p>Conclusion</p> <p>The tested thiocyanate and H<sub>2</sub>O<sub>2 </sub>mixtures showed no relevant antimicrobial effect. However, by adding lactoperoxidase enzyme, the mixtures became not only an effective bactericidal (Streptococcus mutans and sanguinis) but also a fungicidal (Candida albicans) agent.</p
Interaction of paraffin wax gels with random crystalline/amorphous hydrocarbon copolymers
The control mechanisms involved in the modification of wax crystal dimensions in crude oils and refined fuels are of joint scientific and practical interest. An understanding of these mechanisms allows strategies to be developed that lead to decreases in crude oil pour points or (for refined fuels) cold filter plugging points. The attainment of these goals involves the control and modification of wax crystals that spontaneously form in mixed hydrocarbon systems upon decreasing temperature. This work reports on the influence of random crystalline-amorphous block copolymers (ethylene-butene) upon the rheology of model oils. In a parallel fashion small-angle neutron scattering was exploited to gain microscopic insight as to how added poly(ethylene-butene) copolymers modify the wax crystal structures. The copolymers with different contents of polyethylene are highly selective with respect to wax crystal modification. Thus, the copolymer with the highest crystalline tendency is more efficient for the larger wax molecules while the less crystalline one is more efficient for the lower waxes
Interaction of paraffin wax gels with ethylene/vinyl acetate copolymers
The commercial grades of ethylene/vinyl acetate (EVA) co-polymers have found application as pour point" depressants in refined fuels. This study focuses on their behavior as additives to crude oils, where the intent is to reduce the yield stress of the gels that can form when the oil exits the reservoir. The model crude oils consisted of 4 wt % wax in decane. At EVA dosage levels of similar to200 ppm, the reduction in yield stress is 3 orders of magnitude for the C-36 wax, whereas the reduction is 1 order of magnitude for C-32 and only 3-fold for the C-28 wax. This decrease in efficiency with decreasing wax carbon number indicates that the EVA materials would not provide an adequate reduction in yield stress to ensure against gelation in pipeline transport. Neutron scattering studies, as a function of temperature, of the self-assembly of the EVA co-polymers show dramatically different aggregated structures in decane. The EVA with the lowest ethylene content shows scattering that increases with a power-law exponent of similar to1.6. This scattering behavior is typical for weakly aggregating polymer gels. In contrast, the EVA with the higher ethylene content shows a transition from surface scattering (found for strongly segregated objects) to a plateau whose height is dependent on temperature. Micrographs of the wax crystal morphology indicate that the ethylene-poor EVA alters the wax crystal habit at higher concentrations more effectively than does its higher-ethylene-content counterpart, whereas the latter EVA grade seems to form more wax crystals at low concentrations
Efficacy of cupping therapy in patients with the fibromyalgia syndrome-a randomised placebo controlled trial
© 2016 The Author(s). This study aimed to test the efficacy of cupping therapy to improve symptoms and quality of life in patients diagnosed with the fibromyalgia syndrome. Participants were randomly assigned to cupping therapy, sham or usual care. Cupping was administered five times at twice weekly intervals on the upper and lower back. The primary outcome measure was pain intensity at day 18. Secondary outcomes included functional disability, quality of life, fatigue and sleep quality as well as pressure pain sensitivity, satisfaction and safety at day 18 and 6 months. Altogether 141 patients were included in this study (139 females, 55.8 ± 9.1 years). After 18 days patients reported significant less pain after cupping compared to usual care (difference-12.4; 95% CI:-18.9;-5.9, p < 0.001) but not compared to sham (difference-3.0; 95% CI:-9.9, 3.9, p = 0.396). Further effects were found for quality of life compared to usual care. Patients were mildly satisfied with cupping and sham cupping; and only minor side effects were observed. Despite cupping therapy being more effective than usual care to improve pain intensity and quality of life, effects of cupping therapy were small and comparable to those of a sham treatment, and as such cupping cannot be recommended for fibromyalgia at the current time
Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism
Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD
Diazoxide-responsive hyperinsulinemic hypoglycemia caused by HNF4A gene mutations
Objective: The phenotype associated with heterozygous HNF4A gene mutations has recently been extended to include diazoxide responsive neonatal hypoglycemia in addition to maturity-onset diabetes of the young (MODY). To date, mutation screening has been limited to patients with a family history consistent with MODY. In this study, we investigated the prevalence of HNF4A mutations in a large cohort of patients with diazoxide responsive hyperinsulinemic hypoglycemia (HH).
Subjects and methods: We sequenced the ABCC8, KCNJ11, GCK, GLUD1, and/or HNF4A genes in 220 patients with HH responsive to diazoxide. The order of genetic testing was dependent upon the clinical phenotype.
Results: A genetic diagnosis was possible for 59/220 (27%) patients. KATP channel mutations were most common (15%) followed by GLUD1 mutations causing hyperinsulinism with hyperammonemia (5.9%), and HNF4A mutations (5%). Seven of the 11 probands with a heterozygous HNF4A mutation did not have a parent affected with diabetes, and four de novo mutations were confirmed. These patients were diagnosed with HI within the first week of life (median age 1 day), and they had increased birth weight (median +2.4 SDS). The duration of diazoxide treatment ranged from 3 months to ongoing at 8 years.
Conclusions: In this large series, HNF4A mutations are the third most common cause of diazoxide responsive HH. We recommend that HNF4A sequencing is considered in all patients with diazoxide responsive HH diagnosed in the first week of life irrespective of a family history of diabetes, once KATP channel mutations have been excluded
Bulk and Boundary Critical Behavior at Lifshitz Points
Lifshitz points are multicritical points at which a disordered phase, a
homogeneous ordered phase, and a modulated ordered phase meet. Their bulk
universality classes are described by natural generalizations of the standard
model. Analyzing these models systematically via modern
field-theoretic renormalization group methods has been a long-standing
challenge ever since their introduction in the middle of the 1970s. We survey
the recent progress made in this direction, discussing results obtained via
dimensionality expansions, how they compare with Monte Carlo results, and open
problems. These advances opened the way towards systematic studies of boundary
critical behavior at -axial Lifshitz points. The possible boundary critical
behavior depends on whether the surface plane is perpendicular to one of the
modulation axes or parallel to all of them. We show that the semi-infinite
field theories representing the corresponding surface universality classes in
these two cases of perpendicular and parallel surface orientation differ
crucially in their Hamiltonian's boundary terms and the implied boundary
conditions, and explain recent results along with our current understanding of
this matter.Comment: Invited contribution to STATPHYS 22, to be published in the
Proceedings of the 22nd International Conference on Statistical Physics
(STATPHYS 22) of the International Union of Pure and Applied Physics (IUPAP),
4--9 July 2004, Bangalore, Indi
- …