2,040 research outputs found

    Density functional theory for a model quantum dot: Beyond the local-density approximation

    Get PDF
    We study both static and transport properties of model quantum dots, employing density functional theory as well as (numerically) exact methods. For the lattice model under consideration the accuracy of the local-density approximation generally is poor. For weak interaction, however, accurate results are achieved within the optimized effective potential method, while for intermediate interaction strengths a method combining the exact diagonalization of small clusters with density functional theory is very successful. Results obtained from the latter approach yield very good agreement with density matrix renormalization group studies, where the full Hamiltonian consisting of the dot and the attached leads has to be diagonalized. Furthermore we address the question whether static density functional theory is able to predict the exact linear conductance through the dot correctly - with, in general, negative answer.Comment: 8 page

    Mechanically Detecting and Avoiding the Quantum Fluctuations of a Microwave Field

    Get PDF
    During the theoretical investigation of the ultimate sensitivity of gravitational wave detectors through the 1970's and '80's, it was debated whether quantum fluctuations of the light field used for detection, also known as photon shot noise, would ultimately produce a force noise which would disturb the detector and limit the sensitivity. Carlton Caves famously answered this question with "They do." With this understanding came ideas how to avoid this limitation by giving up complete knowledge of the detector's motion. In these back-action evading (BAE) or quantum non-demolition (QND) schemes, one manipulates the required quantum measurement back-action by placing it into a component of the motion which is unobserved and dynamically isolated. Using a superconducting, electro-mechanical device, we realize a sensitive measurement of a single motional quadrature with imprecision below the zero-point fluctuations of motion, detect both the classical and quantum measurement back-action, and demonstrate BAE avoiding the quantum back-action from the microwave photons by 9 dB. Further improvements of these techniques are expected to provide a practical route to manipulate and prepare a squeezed state of motion with mechanical fluctuations below the quantum zero-point level, which is of interest both fundamentally and for the detection of very weak forces

    Finite-Size Bosonization and Self-Consistent Harmonic Approximation

    Get PDF
    The self-consistent harmonic approximation is extended in order to account for the existence of Klein factors in bosonized Hamiltonians. This is important for the study of finite systems where Klein factors cannot be ignored a priori. As a test we apply the method to interacting spinless fermions with modulated hopping. We calculate the finite-size corrections to the energy gap and the Drude weight and compare our results with the exact solution for special values of the model parameters

    Performance Verification of the FlashCam Prototype Camera for the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of telescopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.Comment: 5 pages, 13 figures, Proceedings of the 9th International Workshop on Ring Imaging Cherenkov Detectors (RICH 2016), Lake Bled, Sloveni

    Statistics of Heat Transfer in Mesoscopic Circuits

    Full text link
    A method to calculate the statistics of energy exchange between quantum systems is presented. The generating function of this statistics is expressed through a Keldysh path integral. The method is first applied to the problem of heat dissipation from a biased mesoscopic conductor into the adjacent reservoirs. We then consider energy dissipation in an electrical circuit around a mesoscopic conductor. We derive the conditions under which measurements of the fluctuations of heat dissipation can be used to investigate higher order cumulants of the charge counting statistics of a mesoscopic conductor.Comment: 9 pages, 6 figure

    FlashCam: a fully-digital camera for the medium-sized telescopes of the Cherenkov Telescope Array

    Full text link
    The FlashCam group is currently preparing photomultiplier-tube based cameras proposed for the medium-sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The cameras are designed around the FlashCam readout concept which is the first fully-digital readout system for Cherenkov cameras, based on commercial FADCs and FPGAs as key components for the front-end electronics modules and a high performance camera server as back-end. This contribution describes the progress of the full-scale FlashCam camera prototype currently under construction, as well as performance results also obtained with earlier demonstrator setups. Plans towards the production and implementation of FlashCams on site are also briefly presented.Comment: 8 pages, 6 figures. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    The PANDA GEM-based TPC Prototype

    Full text link
    We report on the development of a GEM-based TPC prototype for the PANDA experiment. The design and requirements of this device will be illustrated, with particular emphasis on the properties of the recently tested GEM-detector, the characterization of the read-out electronics and the development of the tracking software that allows to evaluate the GEM-TPC data.Comment: submitted to NIMA 4 pages, 6 picture

    Diffuse transport and spin accumulation in a Rashba two-dimensional electron gas

    Full text link
    The Rashba Hamiltonian describes the splitting of the conduction band as a result of spin-orbit coupling in the presence of an asymmetric confinement potential and is commonly used to model the electronic structure of confined narrow-gap semiconductors. Due to the mixing of spin states some care has to be exercised in the calculation of transport properties. We derive the diffusive conductance tensor for a disordered two-dimensional electron gas with spin-orbit interaction and show that the applied bias induces a spin accumulation, but that the electric current is not spin-polarized.Comment: REVTeX4 format, 5 page

    Two populations of X-ray pulsars produced by two types of supernovae

    No full text
    Two types of supernova are thought to produce the overwhelming majority of neutron stars in the Universe. The first type, iron-core collapse supernovae, occurs when a high-mass star develops a degenerate iron core that exceeds the Chandrasekhar limit. The second type, electron-capture supernovae, is associated with the collapse of a lower-mass oxygen-neon-magnesium core as it loses pressure support owing to the sudden capture of electrons by neon and/or magnesium nuclei. It has hitherto been impossible to identify the two distinct families of neutron stars produced in these formation channels. Here we report that a large, well-known class of neutron-star-hosting X-ray pulsars is actually composed of two distinct sub-populations with different characteristic spin periods, orbital periods and orbital eccentricities. This class, the Be/X-ray binaries, contains neutron stars that accrete material from a more massive companion star. The two sub-populations are most probably associated with the two distinct types of neutron-star-forming supernovae, with electron-capture supernovae preferentially producing system with short spin period, short orbital periods and low eccentricity. Intriguingly, the split between the two sub-populations is clearest in the distribution of the logarithm of spin period, a result that had not been predicted and which still remains to be explaine

    Anderson-localization versus delocalization of interacting fermions in one dimension

    Get PDF
    Using the density matrix renormalization group algorithm, we investigate the lattice model for spinless fermions in one dimension in the presence of a strong interaction and disorder. The phase sensitivity of the ground state energy is determined with high accuracy for systems up to a size of 60 lattice constants. This quantity is found to be log-normally distributed. The fluctuations grow algebraically with system size with a universal exponent of ~2/3 in the localized region of the phase diagram. Surprizingly, we find, for an attractive interaction, a delocalized phase of finite extension. The boundary of this delocalized phase is determined.Comment: 5 pages, 6 figures, revte
    corecore