4,297 research outputs found
Kerr nonlinearities and nonclassical states with superconducting qubits and nanomechanical resonators
We propose the use of a superconducting charge qubit capacitively coupled to
two resonant nanomechanical resonators to generate Yurke-Stoler states, i.e.
quantum superpositions of pairs of distinguishable coherent states 180
out of phase with each other. This is achieved by effectively implementing Kerr
nonlinearities induced through application of a strong external driving field
in one of the resonators. A simple study of the effect of dissipation on our
scheme is also presented, and lower bounds of fidelity and purity of the
generated state are calculated. Our procedure to implement a Kerr nonlinearity
in this system may be used for high precision measurements in nanomechanical
resonators.Comment: 5 pages, 2 figures, fixed typo
Kaon and Antikaon Production in Heavy Ion Collisions at 1.5 AGeV
At the Kaon Spectrometer KaoS at SIS, GSI the production of kaons and
antikaons in heavy ion reactions at a beam energy of 1.5 AGeV has been measured
for the collision systems Ni+Ni and Au+Au. The K-/K+ ratio is found to be
constant for both systems and as a function of impact parameter but the slopes
of K+ and K- spectra differ for all impact parameters. Furthermore the
respective polar angle distributions will be presented as a function of
centrality.Comment: 4 pages, 4 figures, SQM2001 in Frankfurt, Sept.2001, submitted to
Journal of Physics
Enhancement of Cavity Cooling of a Micromechanical Mirror Using Parametric Interactions
It is shown that an optical parametric amplifier inside a cavity can
considerably improve the cooling of the micromechanical mirror by radiation
pressure. The micromechanical mirror can be cooled from room temperature 300 K
to sub-Kelvin temperatures, which is much lower than what is achievable in the
absence of the parametric amplifier. Further if in case of a precooled mirror
one can reach millikelvin temperatures starting with about 1 K. Our work
demonstrates the fundamental dependence of radiation pressure effects on photon
statistics.Comment: 14 pages, 7 figure
Role of Fragment Higher Static Deformations in the Cold Binary Fission of Cf
We study the binary cold fission of Cf in the frame of a cluster
model where the fragments are born to their respective ground states and
interact via a double-folded potential with deformation effects taken into
account up to multipolarity . The preformation factors were
neglected. In the case when the fragments are assumed to be spherical or with
ground state quadrupole deformation, the -value principle dictates the
occurence of a narrow region around the double magic Sn, like in the
case of cluster radioactivity. When the hexadecupole deformation is turned on,
an entire mass-region of cold fission in the range 138 - 156 for the heavy
fragment arise, in agreement with the experimental observations.
This fact suggests that in the above mentioned mass-region, contrary to the
usual cluster radioactivity where the daughter nucleus is always a
neutron/proton (or both) closed shell or nearly closed shell spherical nucleus,
the clusterization mechanism seems to be strongly influenced by the
hexadecupole deformations rather than the -value.Comment: 10 pages, 12 figure
Comparison of Grain Sources (Barley, White Corn, and Yellow Corn) for Swine Diets and Their Effect on Production and Carcass Traits
Energy sources differ in content, quality, and availability of nutrients. The objective of this study was to identify and compare differences in production and carcass traits in pigs fed different energy sources. While pigs fed a barley-based diet had a smaller loin muscle area, there was no difference among diets when comparing fat depth or percent fat-free lean. Barley based-diets and a diet containing one-third yellow corn and two-thirds white corn had a lower lean gain per day on test. There was no significant difference in average daily gain or feed-to-gain ratios
Ternary configuration in the framework of inverse mean-field method
A static scission configuration in cold ternary fission has been considered
in the framework of mean field approach. The inverse scattering method is
applied to solve single-particle Schroedinger equation, instead of constrained
selfconsistent Hartree-Fock equations. It is shown, that it is possible to
simulate one-dimensional three-center system via inverse scattering method in
the approximation of reflectless single-particle potentials.Comment: 8 pages, 1 figure, iopart.cls, to be published in Int.J.Mod.Phys.
Poly-MTO, {(CH_3)_{0.92} Re O_3}_\infty, a Conducting Two-Dimensional Organometallic Oxide
Polymeric methyltrioxorhenium, {(CH_{3})_{0.92}ReO_{3}}_{\infty} (poly-MTO),
is the first member of a new class of organometallic hybrids which adopts the
structural pattern and physical properties of classical perovskites in two
dimensions (2D). We demonstrate how the electronic structure of poly-MTO can be
tailored by intercalation of organic donor molecules, such as
tetrathiafulvalene (TTF) or bis-(ethylendithio)-tetrathiafulvalene (BEDT-TTF),
and by the inorganic acceptor SbF. Integration of donor molecules leads to
a more insulating behavior of poly-MTO, whereas SbF insertion does not
cause any significant change in the resistivity. The resistivity data of pure
poly-MTO is remarkably well described by a two-dimensional electron system.
Below 38 K an unusual resistivity behavior, similar to that found in doped
cuprates, is observed: The resistivity initially increases approximately as
ln) before it changes into a dependence below 2 K.
As an explanation we suggest a crossover from purely two-dimensional
charge-carrier diffusion within the \{ReO\} planes at high
temperatures to three-dimensional diffusion at low temperatures in a
disorder-enhanced electron-electron interaction scenario (Altshuler-Aronov
correction). Furthermore, a linear positive magnetoresistance was found in the
insulating regime, which is caused by spatial localization of itinerant
electrons at some of the Re atoms, which formally adopt a electronic
configuration. X-ray diffraction, IR- and ESR-studies, temperature dependent
magnetization and specific heat measurements in various magnetic fields suggest
that the electronic structure of poly-MTO can safely be approximated by a
purely 2D conductor.Comment: 15 pages, 16 figures, 2 table
- …