401 research outputs found
Detection rate of actionable mutations in diverse cancers using a biopsy-free (blood) circulating tumor cell DNA assay.
Analysis of cell-free DNA using next-generation sequencing (NGS) is a powerful tool for the detection/monitoring of alterations present in circulating tumor DNA (ctDNA). Plasma extracted from 171 patients with a variety of cancers was analyzed for ctDNA (54 genes and copy number variants (CNVs) in three genes (EGFR, ERBB2 and MET)). The most represented cancers were lung (23%), breast (23%), and glioblastoma (19%). Ninety-nine patients (58%) had at least one detectable alteration. The most frequent alterations were TP53 (29.8%), followed by EGFR (17.5%), MET (10.5%), PIK3CA (7%), and NOTCH1 (5.8%). In contrast, of 222 healthy volunteers, only one had an aberration (TP53). Ninety patients with non-brain tumors had a discernible aberration (65% of 138 patients; in 70% of non-brain tumor patients with an alteration, the anomaly was potentially actionable). Interestingly, nine of 33 patients (27%) with glioblastoma had an alteration (6/33 (18%) potentially actionable). Overall, sixty-nine patients had potentially actionable alterations (40% of total; 69.7% of patients (69/99) with alterations); 68 patients (40% of total; 69% of patients with alterations), by a Food and Drug Administration (FDA) approved drug. In summary, 65% of diverse cancers (as well as 27% of glioblastomas) had detectable ctDNA aberration(s), with the majority theoretically actionable by an approved agent
The Proteus Navier-Stokes code
An effort is currently underway at NASA Lewis to develop two- and three-dimensional Navier-Stokes codes, called Proteus, for aerospace propulsion applications. The emphasis in the development of Proteus is not algorithm development or research on numerical methods, but rather the development of the code itself. The objective is to develop codes that are user-oriented, easily-modified, and well-documented. Well-proven, state-of-the-art solution algorithms are being used. Code readability, documentation (both internal and external), and validation are being emphasized. This paper is a status report on the Proteus development effort. The analysis and solution procedure are described briefly, and the various features in the code are summarized. The results from some of the validation cases that have been run are presented for both the two- and three-dimensional codes
Recommended from our members
Revisiting Epidermal Growth Factor Receptor (EGFR) Amplification as a Target for Anti-EGFR Therapy: Analysis of Cell-Free Circulating Tumor DNA in Patients With Advanced Malignancies.
PurposeTo date, evidence for tissue epidermal growth factor receptor (EGFR) overexpression as a biomarker for anti-EGFR therapies has been weak. We investigated the genomic landscape of EGFR amplification in blood-derived cell-free tumor DNA (cfDNA) across diverse cancers and the role of anti-EGFR therapies in achieving response.MethodsWe assessed EGFR amplification status among 28,584 patients with malignancies evaluated by clinical-grade next-generation sequencing (NGS) of blood-derived cfDNA (54- to 73-gene panel). Furthermore, we curated the clinical characteristics of 1,434 patients at the University of California San Diego who had cfDNA testing by this NGS test.ResultsOverall, EGFR amplification was detected in cfDNA from 8.5% of patients (2,423 of 28,584), most commonly in colorectal (16.3% [458 of 2,807]), non-small-cell lung (9.0% [1,096 of 12,197]), and genitourinary cancers (8.1% [170 of 2,104]). Most patients had genomic coalterations (96.9% [95 of 98]), frequently involving genes affecting other tyrosine kinases (72.4% [71 of 98]), mitogen-activated protein kinase cascades (56.1% [55 of 98]), cell-cycle-associated signals (52.0% [51 of 98]), and the phosphoinositide 3-kinase pathway (35.7% [35 of 98]). EGFR amplification emerged in serial cfDNA after various anticancer therapies (n = 6), including checkpoint inhibitors (n = 4), suggesting a possible role for these amplifications in acquired resistance. Nine evaluable patients with EGFR amplification were treated with anti-EGFR-based regimens; five (55.6%) achieved partial responses, including three patients whose tissue NGS lacked EGFR amplification.ConclusionEGFR amplification was detected in cfDNA among 8.5% of 28,584 diverse cancers. Most patients had coexisting alterations. Responses were observed in five of nine patients who received EGFR inhibitors. Incorporating EGFR inhibitors into the treatment regimens of patients harboring EGFR amplification in cfDNA merits additional study
Evaluating the role of sediment‐bacteria interactions on Escherichia coli concentrations at beaches in southern Lake Michigan
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102640/1/jgrc20481.pd
Recommended from our members
Age-related differences in breast cancer mortality according to race/ethnicity, insurance, and socioeconomic status.
BackgroundWe assessed breast cancer mortality in older versus younger women according to race/ethnicity, neighborhood socioeconomic status (nSES), and health insurance status.MethodsThe study included female breast cancer cases 18 years of age and older, diagnosed between 2005 and 2015 in the California Cancer Registry. Multivariable Cox proportional hazards modeling was used to generate hazard ratios (HR) of breast cancer specific deaths and 95% confidence intervals (CI) for older (60+ years) versus younger (< 60 years) patients separately by race/ethnicity, nSES, and health insurance status.ResultsRisk of dying from breast cancer was higher in older than younger patients after multivariable adjustment, which varied in magnitude by race/ethnicity (P-interaction< 0.0001). Comparing older to younger patients, higher mortality differences were shown for non-Hispanic White (HR = 1.43; 95% CI, 1.36-1.51) and Hispanic women (HR = 1.37; 95% CI, 1.26-1.50) and lower differences for non-Hispanic Blacks (HR = 1.17; 95% CI, 1.04-1.31) and Asians/Pacific Islanders (HR = 1.15; 95% CI, 1.02-1.31). HRs comparing older to younger patients varied by insurance status (P-interaction< 0.0001), with largest mortality differences observed for privately insured women (HR = 1.51; 95% CI, 1.43-1.59) and lowest in Medicaid/military/other public insurance (HR = 1.18; 95% CI, 1.10-1.26). No age differences were shown for uninsured women. HRs comparing older to younger patients were similar across nSES strata.ConclusionOur results provide evidence for the continued disparity in Black-White breast cancer mortality, which is magnified in younger women. Moreover, insurance status continues to play a role in breast cancer mortality, with uninsured women having the highest risk for breast cancer death, regardless of age
Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions
We update the capabilities of the software instrument Modules for Experiments
in Stellar Astrophysics (MESA) and enhance its ease of use and availability.
Our new approach to locating convective boundaries is consistent with the
physics of convection, and yields reliable values of the convective core mass
during both hydrogen and helium burning phases. Stars with
become white dwarfs and cool to the point where the electrons are degenerate
and the ions are strongly coupled, a realm now available to study with MESA due
to improved treatments of element diffusion, latent heat release, and blending
of equations of state. Studies of the final fates of massive stars are extended
in MESA by our addition of an approximate Riemann solver that captures shocks
and conserves energy to high accuracy during dynamic epochs. We also introduce
a 1D capability for modeling the effects of Rayleigh-Taylor instabilities that,
in combination with the coupling to a public version of the STELLA radiation
transfer instrument, creates new avenues for exploring Type II supernovae
properties. These capabilities are exhibited with exploratory models of
pair-instability supernova, pulsational pair-instability supernova, and the
formation of stellar mass black holes. The applicability of MESA is now widened
by the capability of importing multi-dimensional hydrodynamic models into MESA.
We close by introducing software modules for handling floating point exceptions
and stellar model optimization, and four new software tools -- MESAWeb,
MESA-Docker, pyMESA, and mesastar.org -- to enhance MESA's education and
research impact.Comment: 64 pages, 61 figures; Accepted to AAS Journal
Fixed Point Action and Topology in the CP^3 Model
We define a fixed point action in two-dimensional lattice
models. The fixed point action is a classical perfect lattice action, which is
expected to show strongly reduced cutoff effects in numerical simulations.
Furthermore, the action has scale-invariant instanton solutions, which enables
us to define a correct topological charge without topological defects. Using a
parametrization of the fixed point action for the model in a
Monte Carlo simulation, we study the topological susceptibility.Comment: 27 pages, 5 figures, typeset using REVTEX, Sec. 6 rewritten
(additional numerical results), to be published in Phys.Rev.
Detection of low prevalence somatic mutations in solid tumors with ultra-deep targeted sequencing
Ultra-deep targeted sequencing (UDT-Seq) can identify subclonal somatic mutations in tumor samples. Early assays' limited breadth and depth restrict their clinical utility. Here, we target 71 kb of mutational hotspots in 42 cancer genes. We present novel methods enhancing both laboratory workflow and mutation detection. We evaluate UDT-Seq true sensitivity and specificity (> 94% and > 99%, respectively) for low prevalence mutations in a mixing experiment and demonstrate its utility using six tumor samples. With an improved performance when run on the Illumina Miseq, the UDT-Seq assay is well suited for clinical applications to guide therapy and study clonal selection in heterogeneous samples
- …