266 research outputs found

    Making the case for an International Decade of Radiocarbon

    Get PDF
    Radiocarbon (14C) is a critical tool for understanding the global carbon cycle. During the Anthropocene, two new processes influenced 14C in atmospheric, land and ocean carbon reservoirs. First, 14C-free carbon derived from fossil fuel burning has diluted 14C, at rates that have accelerated with time. Second, 'bomb' 14C produced by atmospheric nuclear weapon tests in the mid-twentieth century provided a global isotope tracer that is used to constrain rates of air-sea gas exchange, carbon turnover, large-scale atmospheric and ocean transport, and other key C cycle processes. As we write, the 14C/12C ratio of atmospheric CO2 is dropping below pre-industrial levels, and the rate of decline in the future will depend on global fossil fuel use and net exchange of bomb 14C between the atmosphere, ocean and land. This milestone coincides with a rapid increase in 14C measurement capacity worldwide. Leveraging future 14C measurements to understand processes and test models requires coordinated international effort-a 'decade of radiocarbon' with multiple goals: (i) filling observational gaps using archives, (ii) building and sustaining observation networks to increase measurement density across carbon reservoirs, (iii) developing databases, synthesis and modelling tools and (iv) establishing metrics for identifying and verifying changes in carbon sources and sinks. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'

    Limited contribution of permafrost carbon to methane release from thawing peatlands

    Get PDF
    Models predict that thaw of permafrost soils at northern high-latitudes will release tens of billions of tonnes of carbon (C) to the atmosphere by 21001-3. The effect on the Earth's climate depends strongly on the proportion of this C which is released as the more powerful greenhouse gas methane (CH4), rather than carbon dioxide (CO2)1,4; even if CH4 emissions represent just 2% of the C release, they would contribute approximately one quarter of the climate forcing5. In northern peatlands, thaw of ice-rich permafrost causes surface subsidence (thermokarst) and water-logging6, exposing substantial stores (10s of kg C m-2, ref. 7) of previously-frozen organic matter to anaerobic conditions, and generating ideal conditions for permafrost-derived CH4 release. Here we show that, contrary to expectations, although substantial CH4 fluxes (>20 g CH4 m 2 yr-1) were recorded from thawing peatlands in northern Canada, only a small amount was derived from previously-frozen C (<2 g CH4 m-2 yr-1). Instead, fluxes were driven by anaerobic decomposition of recent C inputs. We conclude that thaw-induced changes in surface wetness and wetland area, rather than the anaerobic decomposition of previously-frozen C, may determine the effect of permafrost thaw on CH4 emissions from northern peatlands

    Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming

    Get PDF
    Microbial decomposition of soil carbon in high-latitude tundra underlain with permafrost is one of the most important, but poorly understood, potential positive feedbacks of greenhouse gas emissions from terrestrial ecosystems into the atmosphere in a warmer world. Using integrated metagenomic technologies, we showed that the microbial functional community structure in the active layer of tundra soil was significantly altered after only 1.5 years of warming, a rapid response demonstrating the high sensitivity of this ecosystem to warming. The abundances of microbial functional genes involved in both aerobic and anaerobic carbon decomposition were also markedly increased by this short-term warming. Consistent with this, ecosystem respiration (R eco) increased up to 38%. In addition, warming enhanced genes involved in nutrient cycling, which very likely contributed to an observed increase (30%) in gross primary productivity (GPP). However, the GPP increase did not offset the extra R eco, resulting in significantly more net carbon loss in warmed plots compared with control plots. Altogether, our results demonstrate the vulnerability of active-layer soil carbon in this permafrost-based tundra ecosystem to climate warming and the importance of microbial communities in mediating such vulnerability

    Decadal soil carbon accumulation across Tibetan permafrost regions

    Get PDF
    Acknowledgements We thank the members of Peking University Sampling Teams (2001–2004) and IBCAS Sampling Teams (2013–2014) for assistance in field data collection. We also thank the Forestry Bureau of Qinghai Province and the Forestry Bureau of Tibet Autonomous Region for their permission and assistance during the sampling process. This study was financially supported by the National Natural Science Foundation of China (31670482 and 31322011), National Basic Research Program of China on Global Change (2014CB954001 and 2015CB954201), Chinese Academy of Sciences-Peking University Pioneer Cooperation Team, and the Thousand Young Talents Program.Peer reviewedPostprintPostprin

    Collapsing Arctic coastlines

    Get PDF
    A holistic and transdisciplinary approach is urgently required to investigate the physical and socio-economic impacts of collapsing coastlines in the Arctic nearshore zone
    • 

    corecore