1,689 research outputs found

    The organic component of interstellar grains

    Get PDF
    The 3.4 micron absorption feature observed in the spectrum of a number of Galactic Center (GC) sources indicates the presence of organic molecules in the interstellar medium. It is ascribed to the C-H stretch vibration of tetrahedrally bonded carbon. From the observed features due to the interstellar organic material, an estimate was made of its composition and abundance. The ratio of the number of C-H groups of tetrahedrally to those of trigonally bonded carbon was 1.5, the cosmic abundance of carbon was .00037, and the depth of the silicate absorption toward the GC was taken equal to 3.6

    Laboratory and observational study of the interrelation of the carbonaceous component of interstellar dust and solar system materials

    Get PDF
    By studying the chemical and isotopic composition of interstellar ice and dust, one gains insight into the composition and chemical evolution of the solid bodies in the solar nebula and the nature of the material subsequently brought into the inner part of the solar system by comets and meteorites. It is now possible to spectroscopically probe the composition of interstellar ice and dust in the mid-infrared, the spectral range which is most diagnostic of fundamental molecular vibrations. We can compare these spectra of various astronomical objects (including the diffuse and dense interstellar medium, comets, and the icy outer planets and their satellites) with the spectra of analogs we produce in the laboratory under conditions which mimic those in these different objects. In this way one can determine the composition and abundances of the major constituents of the various ices and place general constraints on the types of organics coating the grains in the diffuse interstellar medium. In particular we have shown the ices in the dense clouds contain H2O, CH3OH, CO, perhaps some NH3 and H2CO, we well as nitriles and ketones or esters. Furthermore, by studying the photochemistry of these ice analogs in the laboratory, one gains insight into the chemistry which takes place in interstellar/precometary ices. Chemical and spectroscopic studies of photolyzed analogs (including deuterated species) are now underway. The results of some of these studies will be presented and implications for the evolution of the biogenic elements in interstellar dust and comets will be discussed

    Laboratory simulation of the photoprocessing and warm-up of cometary and pre-cometary ices: Production of complex organic molecules

    Get PDF
    The recent missions to Comet Halley detected large quantities of organic material on grains as well as organic molecules in the gas phase. A possible origin of these materials is the energetic processing of ice mantles on the grains prior to comet formation, either in the pre-solar nebula or the interstellar medium. This process was simulated in the laboratory by depositing interstellar ice analogs (H2O/CH3OH/CO/NH3) on a cold (10 K) substrate with simultaneous UV irradiation. The material evaporating during warm-up of the photolyzed ice as well as the residue remaining at room temperature was analyzed by a number of techniques. It was found that a large number of organic molecules of various complexity are synthesized during the simulation process, stressing the possible significance of UV photolysis for producing the organic Comet material

    Ices in the edge-on disk CRBR 2422.8-3423: Spitzer spectroscopy and Monte Carlo radiative transfer modeling

    Full text link
    We present 5.2-37.2 micron spectroscopy of the edge-on circumstellar disk CRBR 2422.8-3423 obtained using the InfraRed Spectrograph (IRS) of the Spitzer Space Telescope. The IRS spectrum is combined with ground-based 3-5 micron spectroscopy to obtain a complete inventory of solid state material present along the line of sight toward the source. We model the object with a 2D axisymmetric (effectively 3D) Monte Carlo radiative transfer code. It is found that the model disk, assuming a standard flaring structure, is too warm to contain the very large observed column density of pure CO ice, but is possibly responsible for up to 50% of the water, CO2 and minor ice species. In particular the 6.85 micron band, tentatively due to NH4+, exhibits a prominent red wing, indicating a significant contribution from warm ice in the disk. It is argued that the pure CO ice is located in the dense core Oph-F in front of the source seen in the submillimeter imaging, with the CO gas in the core highly depleted. The model is used to predict which circumstances are most favourable for direct observations of ices in edge-on circumstellar disks. Ice bands will in general be deepest for inclinations similar to the disk opening angle, i.e. ~70 degrees. Due to the high optical depths of typical disk mid-planes, ice absorption bands will often probe warmer ice located in the upper layers of nearly edge-on disks. The ratios between different ice bands are found to vary by up to an order of magnitude depending on disk inclination due to radiative transfer effects caused by the 2D structure of the disk. Ratios between ice bands of the same species can therefore be used to constrain the location of the ices in a circumstellar disk. [Abstract abridged]Comment: 49 pages, accepted for publication in Ap

    The Infrared Band Strengths of H2o, Co and Co2 in Laboratory Simulations of Astrophysical Ice Mixtures

    Full text link
    Infrared spectroscopic observations toward objects obscured by dense cloud material show that H2_2O, CO and, likely, CO2_2 are important constituents of interstellar ice mantles. In order to accurately calculate the column densities of these molecules, it is important to have good measurements of their infrared band strengths in astrophysical ice analogs. We present the results of laboratory experiments to determine these band strengths. Improved experimental methods, relying on simultaneous independent depositions of the molecule to be studied and of the dominating ice component, have led to accuracies better than a few percent. Furthermore, the temperature behavior of the infrared band strengths of CO and H2_2O are studied. In contrast with previous work, the strengths of the CO, CO2_2, and H2_2O infrared features are found to depend only weakly on the composition of the ice matrix, and the reversible temperature dependence of the CO band is found to be weaker than previously measured for a mixture of CO in H2_2O.Comment: 17 pages uuencoded compressed Postscript file-- includes all 6 figures (replaces most recent posting with only figs 2-5

    A New Galactic 6cm Formaldehyde Maser

    Full text link
    We report the detection of a new H2CO maser in the massive star forming region G23.71-0.20 (IRAS 18324-0820), i.e., the fifth region in the Galaxy where H2CO maser emission has been found. The new H2CO maser is located toward a compact HII region, and is coincident in velocity and position with 6.7 GHz methanol masers and with an IR source as revealed by Spitzer/IRAC GLIMPSE data. The coincidence with an IR source and 6.7 GHz methanol masers suggests that the maser is in close proximity to an embedded massive protostar. Thus, the detection of H2CO maser emission toward G23.71-0.20 supports the trend that H2CO 6cm masers trace molecular material very near young massive stellar objects.Comment: Accepted for publication in The Astrophysical Journal Letter

    Bands of solid CO_2 in the 2-3 µm spectrum of S 140:IRS1

    Get PDF
    We investigate the 2-3 µm ISO-SWS spectrum of the luminous protostellar object S 140:IRS1. Two narrow absorption features are detected at 2.70 and 2.77 μm, which are well fitted with laboratory spectra of the ν_1 + ν_3 and the 2ν_2 + ν_3 combination modes of solid . The ice in this line of sight must have been subjected to significant heating, in agreement with previously studied CO_2 bands. A combined laboratory fit to all CO2 bands detected toward S 140:IRS1 shows, among others, the need for particle shape calculations for the CO_2 stretch mode. Finally, we discuss the absence of features of isolated H_2O and dangling OH groups in the spectrum of S 140:IRS1

    Ice absorption features in the 5-8 μm region toward embedded protostars

    Get PDF
    We have obtained 5-8 μm spectra towards 10 embedded protostars using the Short Wavelength Spectrometer on board the Infrared Space Observatory (ISO-SWS) with the aim of studying the composition of interstellar ices. The spectra are dominated by absorption bands at 6.0 μm and 6.85 μm. The observed peak positions, widths and relative intensities of these bands vary dramatically along the different lines of sight. On the basis of comparison with laboratory spectra, the bulk of the 6.0 μm absorption band is assigned to amorphous H_2O ice. Additional absorption, in this band, is seen toward 5 sources on the short wavelength wing, near 5.8 μm, and the long wavelength side near 6.2 μm. We attribute the short wavelength absorption to a combination of formic acid (HCOOH) and formaldehyde (H_2CO), while the long wavelength absorption has been assigned to the C-C stretching mode of aromatic structures. From an analysis of the 6.85 μm band, we conclude that this band is composed of two components: a volatile component centered near 6.75 μm and a more refractory component at 6.95 μm. From a comparison with various temperature tracers of the thermal history of interstellar ices, we conclude that the two 6.85 μm components are related through thermal processing. We explore several possible carriers of the 6.85 absorption band, but no satisfactory identification can be made at present. Finally, we discuss the possible implications for the origin and evolution of interstellar ices that arise from these new results
    corecore