1,608 research outputs found

    A New Galactic 6cm Formaldehyde Maser

    Get PDF
    We report the detection of a new H2CO maser in the massive star forming region G23.71-0.20 (IRAS 18324-0820), i.e., the fifth region in the Galaxy where H2CO maser emission has been found. The new H2CO maser is located toward a compact HII region, and is coincident in velocity and position with 6.7 GHz methanol masers and with an IR source as revealed by Spitzer/IRAC GLIMPSE data. The coincidence with an IR source and 6.7 GHz methanol masers suggests that the maser is in close proximity to an embedded massive protostar. Thus, the detection of H2CO maser emission toward G23.71-0.20 supports the trend that H2CO 6cm masers trace molecular material very near young massive stellar objects.Comment: Accepted for publication in The Astrophysical Journal Letter

    Ices in the edge-on disk CRBR 2422.8-3423: Spitzer spectroscopy and Monte Carlo radiative transfer modeling

    Full text link
    We present 5.2-37.2 micron spectroscopy of the edge-on circumstellar disk CRBR 2422.8-3423 obtained using the InfraRed Spectrograph (IRS) of the Spitzer Space Telescope. The IRS spectrum is combined with ground-based 3-5 micron spectroscopy to obtain a complete inventory of solid state material present along the line of sight toward the source. We model the object with a 2D axisymmetric (effectively 3D) Monte Carlo radiative transfer code. It is found that the model disk, assuming a standard flaring structure, is too warm to contain the very large observed column density of pure CO ice, but is possibly responsible for up to 50% of the water, CO2 and minor ice species. In particular the 6.85 micron band, tentatively due to NH4+, exhibits a prominent red wing, indicating a significant contribution from warm ice in the disk. It is argued that the pure CO ice is located in the dense core Oph-F in front of the source seen in the submillimeter imaging, with the CO gas in the core highly depleted. The model is used to predict which circumstances are most favourable for direct observations of ices in edge-on circumstellar disks. Ice bands will in general be deepest for inclinations similar to the disk opening angle, i.e. ~70 degrees. Due to the high optical depths of typical disk mid-planes, ice absorption bands will often probe warmer ice located in the upper layers of nearly edge-on disks. The ratios between different ice bands are found to vary by up to an order of magnitude depending on disk inclination due to radiative transfer effects caused by the 2D structure of the disk. Ratios between ice bands of the same species can therefore be used to constrain the location of the ices in a circumstellar disk. [Abstract abridged]Comment: 49 pages, accepted for publication in Ap

    The Infrared Band Strengths of H2o, Co and Co2 in Laboratory Simulations of Astrophysical Ice Mixtures

    Full text link
    Infrared spectroscopic observations toward objects obscured by dense cloud material show that H2_2O, CO and, likely, CO2_2 are important constituents of interstellar ice mantles. In order to accurately calculate the column densities of these molecules, it is important to have good measurements of their infrared band strengths in astrophysical ice analogs. We present the results of laboratory experiments to determine these band strengths. Improved experimental methods, relying on simultaneous independent depositions of the molecule to be studied and of the dominating ice component, have led to accuracies better than a few percent. Furthermore, the temperature behavior of the infrared band strengths of CO and H2_2O are studied. In contrast with previous work, the strengths of the CO, CO2_2, and H2_2O infrared features are found to depend only weakly on the composition of the ice matrix, and the reversible temperature dependence of the CO band is found to be weaker than previously measured for a mixture of CO in H2_2O.Comment: 17 pages uuencoded compressed Postscript file-- includes all 6 figures (replaces most recent posting with only figs 2-5

    Infrared Emission from Interstellar Dust. II. The Diffuse Interstellar Medium

    Get PDF
    We present a quantitative model for the infrared emission from dust in the diffuse interstellar medium. The model consists of a mixture of amorphous silicate grains and carbonaceous grains, each with a wide size distribution ranging from molecules containing tens of atoms to large grains > 1 um in diameter. We assume that the carbonaceous grains have polycyclic aromatic hydrocarbon (PAH)-like properties at very small sizes, and graphitic properties for radii a > 50 A. On the basis of recent laboratory studies and guided by astronomical observations, we propose "astronomical" absorption cross sections for use in modeling neutral and ionized PAHs from the far ultraviolet to the far infrared. We also propose modifications to the far-infrared emissivity of "astronomical silicate". We calculate energy distribution functions for small grains undergoing "temperature spikes" due to stochastic absorption of starlight photons, using realistic heat capacities and optical properties. Using a grain size distribution consistent with the observed interstellar extinction, we are able to reproduce the near-IR to submillimeter emission spectrum of the diffuse interstellar medium, including the PAH emission features at 3.3, 6.2, 7.7, 8.6, and 11.3um. The model is compared with the observed emission at high Galactic latitudes as well as in the Galactic plane, as measured by COBE and IRTS. We calculate infrared emission spectra for our dust model heated by a range of starlight intensities, and we provide tabulated dust opacities (extended tables available at http://www.astro.princeton.edu/~draine/dust/dustmix.html)Comment: Final version published in ApJ, 554, 778 but with factor 1.086 error in Table 6 and Fig. 16 corrected. Main change from astro-ph version 1 is correction of typographical errors in Table 1, and correction of typo in eq. (A2). 51 pages, 16 figures, Late

    VLT-ISAAC 3-5 micron spectroscopy of embedded young low-mass stars. III. Intermediate-mass sources in Vela

    Get PDF
    We performed a spectroscopic survey toward five intermediate-mass class I YSOs located in the Southern Vela molecular cloud in the L and M bands at resolving powers 600-800 up to 10,000, using the Infrared Spectrometer and Array Camera mounted on the VLT-ANTU. Lower mass companion objects were observed simultaneously in both bands. Solid H2O at 3 micron is detected in all sources, including the companion objects. CO ice at 4.67 micron is detected in a few main targets and one companion object. One object (LLN 19) shows little CO ice but strong gas-phase CO ro-vibrational lines in absorption. The CO ice profiles are different from source to source. The amount of water ice and CO ice trapped in a water-rich mantle may correlate with the flux ratio at 12 and 25 micron. The abundance of H2O-rich CO likely correlates with that of water ice. A weak feature at 3.54 mu attributed to solid CH3OH and a broad feature near 4.62 mu are observed toward LLN17, but not toward the other sources. The derived abundances of solid CH3OH and OCN- are ~10% and ~1% of the H2O ice abundance respectively. The H2O optical depths do not show an increase with envelope mass, nor do they show lower values for the companion objects compared with the main protostar. The line-of-sight CO ice abundance does not correlate with the source bolometric luminosity. Comparison of the solid CO profile toward LLN17, which shows an extremely broad CO ice feature, and that of its lower mass companion at a few thousand AU, which exhibits a narrow profile, together with the detection of OCN- toward LLN17 provide direct evidences for local thermal processing of the ice.Comment: Replace wrong files. Accepted by A&A, 22 pages, 18 figure

    ISO Spectroscopy of Young Stellar Objects

    Get PDF
    Observations of gas-phase and solid-state species toward young stellar objects (YSOs) with the spectrometers on board the Infrared Space Observatory are reviewed. The excitation and abundances of the atoms and molecules are sensitive to the changing physical conditions during star-formation. In the cold outer envelopes around YSOs, interstellar ices contain a significant fraction of the heavy element abundances, in particular oxygen. Different ice phases can be distinguished, and evidence is found for heating and segregation of the ices in more evolved objects. The inner warm envelopes around YSOs are probed through absorption and emission of gas-phase molecules, including CO, CO_2, CH_4 and H_2O. An overview of the wealth of observations on gas-phase H_2O in star-forming regions is presented. Gas/solid ratios are determined, which provide information on the importance of gas-grain chemistry and high temperature gas-phase reactions. The line ratios of molecules such as H_2, CO and H_2O are powerful probes to constrain the physical parameters of the gas. Together with atomic and ionic lines such as [0 I] 63 µm, [S I] 25 µm and (Si II] 35 µm, they can also be used to distinguish between photon- and shock-heated gas. Finally, spectroscopic data on circumstellar disks around young stars are mentioned. The results are discussed in the context of the physical and chemical evolution of YSOs

    The Role of Polycyclic Aromatic Hydrocarbons in Ultraviolet Extinction. I. Probing small molecular PAHs

    Full text link
    We have obtained new STIS/HST spectra to search for structure in the ultraviolet interstellar extinction curve, with particular emphasis on a search for absorption features produced by polycyclic aromatic hydrocarbons (PAHs). The presence of these molecules in the interstellar medium has been postulated to explain the infrared emission features seen in the 3-13 μ\mum spectra of numerous sources. UV spectra are uniquely capable of identifying specific PAH molecules. We obtained high S/N UV spectra of stars which are significantly more reddened than those observed in previous studies. These data put limits on the role of small (30-50 carbon atoms) PAHs in UV extinction and call for further observations to probe the role of larger PAHs. PAHs are of importance because of their ubiquity and high abundance inferred from the infrared data and also because they may link the molecular and dust phases of the interstellar medium. A presence or absence of ultraviolet absorption bands due to PAHs could be a definitive test of this hypothesis. We should be able to detect a 20 \AA wide feature down to a 3σ\sigma limit of \sim0.02 AV_V. No such absorption features are seen other than the well-known 2175 \AA bump.Comment: 16 pages, 3 figure, ApJ in pres

    ISO spectroscopy of gas and dust: from molecular clouds to protoplanetary disks

    Get PDF
    Observations of interstellar gas-phase and solid-state species in the 2.4-200 micron range obtained with the spectrometers on board the Infrared Space Observatory are reviewed. Lines and bands due to ices, polycyclic aromatic hydrocarbons, silicates and gas-phase atoms and molecules (in particular H2, CO, H2O, OH and CO2) are summarized and their diagnostic capabilities illustrated. The results are discussed in the context of the physical and chemical evolution of star-forming regions, including photon-dominated regions, shocks, protostellar envelopes and disks around young stars.Comment: 56 pages, 17 figures. To appear in Ann. Rev. Astron. Astrophys. 2004. Higher resolution version posted at http://www.strw.leidenuniv.nl/~ewine/araa04.pd
    corecore