144 research outputs found

    Carbon isotope fractionation during aerobic biodegradation of trichloroethene by Burkholderia cepacia G4: a tool to map degradation mechanisms

    Get PDF
    The strain Burkholderia cepacia G4 aerobically mineralized trichloroethene (TCE) to CO2 over a time period of similar to20 h. Three biodegradation experiments were conducted with different bacterial optical densities at 540 nm (OD(540)s) in order to test whether isotope fractionation was consistent. The resulting TCE degradation was 93, 83.8, and 57.2% (i.e., 7.0, 16.2, and 42.8% TCE remaining) at OD(540)s of 2.0, 1.1, and 0.6, respectively. ODs also correlated linearly with zero-order degradation rates (1.99, 1.11, and 0.64 mumol h(-1)). While initial nonequilibrium mass losses of TCE produced only minor carbon isotope shifts (expressed in per mille delta C- 13(VPDB)), they were 57.2, 39.6, and 17.0parts per thousand between the initial and final TCE levels for the three experiments, in decreasing order of their OD(540)s. Despite these strong isotope shifts, we found a largely uniform isotope fractionation. The latter is expressed with a Rayleigh enrichment factor, E, and was -18.2 when all experiments were grouped to a common point of 42.8% TCE remaining. Although, decreases of epsilon to -20.7 were observed near complete degradation, our enrichment factors were significantly more negative than those reported for anaerobic dehalogenation of TCE. This indicates typical isotope fractionation for specific enzymatic mechanisms that can help to differentiate between degradation pathways

    Heterogeneously catalyzed hydrothermal processing of C5-C6 sugars

    Get PDF
    Biomass has been long exploited as an anthropogenic energy source; however, the 21st century challenges of energy security and climate change are driving resurgence in its utilization both as a renewable alternative to fossil fuels and as a sustainable carbon feedstock for chemicals production. Deconstruction of cellulose and hemicellulose carbohydrate polymers into their constituent C5 and C6 sugars, and subsequent heterogeneously catalyzed transformations, offer the promise of unlocking diverse oxygenates such as furfural, 5-hydroxymethylfurfural, xylitol, sorbitol, mannitol, and gluconic acid as biorefinery platform chemicals. Here, we review recent advances in the design and development of catalysts and processes for C5-C6 sugar reforming into chemical intermediates and products, and highlight the challenges of aqueous phase operation and catalyst evaluation, in addition to process considerations such as solvent and reactor selection

    Stabilization of mesoporous nanocrystalline zirconia with Laponite

    Get PDF
    The mesoporous nanocrystalline zircoina was synthesized via solid state reaction-structure directing method in the presence of Laponite. The introduction of Laponite renders the higher thermal stability and lamellar track to the zirconia. Laponite acts as inhibitor for crystal growth and also hard template for the mesostructure. The role of Laponite is attributed to the interaction between the zirconia precursors and the nano-platelets of Laponite via the bridge of hydrophilic segments of surfactant. It results in the formation of Zr-O-Mg-O-Si frameworks in the direction of Laponite layer with the condensation of frameworks during the calcination process, which contributes the higher stability and lamellar structure to the nano-sized zirconia samples

    COx-free hydrogen production from ammonia ā€“ mimicking the activity of Ru catalysts with unsupported Co-Re alloys

    Get PDF
    On-demand production of hydrogen from ammonia is a challenge limiting the implementation of ammonia as a long term hydrogen vector to overcome the difficulties associated with hydrogen storage. Herein, we present the development of catalysts for the on-demand production of hydrogen from ammonia by combining metals with high and low N-adatom adsorption energies. In this way, cobalt-rhenium (Co-Re) catalysts show high activity mimicking that of ruthenium. EXAFS/XANES analyses demonstrate that the bimetallic Co-Re contribution is responsible for the activity and the stability of the catalysts in consecutive runs with no observable formation of nitrides (Co-N and Re-N) occurring under the ammonia atmosphere. While cobalt is partially re-oxidised under ammonia, re-reduction in the presence of rhenium is observed at higher temperatures, coinciding with the on-set of catalytic activity which is accompanied by minor structural changes. These results provide insight for the development of highly active alloy based ammonia decomposition catalysts

    Layer-by-layer deposition of open-pore mesoporous TiO 2- NafionĀ® film electrodes

    Get PDF
    The formation of variable thickness TiO2 nanoparticle-NafionĀ® composite films with open pores is demonstrated via a layer-by-layer deposition process. Films of about 6 nm diameter TiO2 nanoparticles grow in the presence of NafionĀ® by ā€œclusteringā€ of nanoparticles into bigger aggregates, and the resulting hierarchical structure thickens with about 25 nm per deposition cycle. Film growth is characterized by electron microscopy, atomic force microscopy, and quartz crystal microbalance techniques. Simultaneous small-angle X-ray scattering and wide-angle X-ray scattering measurements for films before and after calcination demonstrate the effect of NafionĀ® binder causing aggregation. Electrochemical methods are employed to characterize the electrical conductivity and diffusivity of charge through the TiO2-NafionĀ® composite films. Characteristic electrochemical responses are observed for cationic redox systems (diheptylviologen2+/+, Ru(NH3)3+/2+6, and ferrocenylmethyl-trimethylammonium2+/+) immobilized into the TiO2-NafionĀ® nanocomposite material. Charge conduction is dependent on the type of redox system and is proposed to occur either via direct conduction through the TiO2 backbone (at sufficiently negative potentials) or via redox-center-based diffusion/electron hopping (at more positive potentials)
    • ā€¦
    corecore