8,252 research outputs found

    High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity

    Full text link
    We demonstrate a qubit readout scheme that exploits the Jaynes-Cummings nonlinearity of a superconducting cavity coupled to transmon qubits. We find that in the strongly-driven dispersive regime of this system, there is the unexpected onset of a high-transmission "bright" state at a critical power which depends sensitively on the initial qubit state. A simple and robust measurement protocol exploiting this effect achieves a single-shot fidelity of 87% using a conventional sample design and experimental setup, and at least 61% fidelity to joint correlations of three qubits.Comment: 5 pages, 4 figure

    Do columnar defects produce bulk pinning?

    Full text link
    From magneto-optical imaging performed on heavy-ion irradiated YBaCuO single crystals, it is found that at fields and temperatures where strong single vortex pinning by individual irradiation-induced amorphous columnar defects is to be expected, vortex motion is limited by the nucleation of vortex kinks at the specimen surface rather than by half-loop nucleation in the bulk. In the material bulk, vortex motion occurs through (easy) kink sliding. Depinning in the bulk determines the screening current only at fields comparable to or larger than the matching field, at which the majority of moving vortices is not trapped by an ion track.Comment: 5 pages, 5 figures, submitted to Physical Review Letter

    uvbyCa H beta CCD Photometry of Clusters. VII. The Intermediate-Age Anticenter Cluster Melotte 71

    Full text link
    CCD photometry on the intermediate-band uvbyCa H beta system is presented for the anticenter, intermediate-age open cluster, Melotte 71. Restricting the data to probable single members of the cluster using the color-magnitude diagram and the photometric indices alone generates a sample of 48 F dwarfs on the unevolved main sequence. The average E(b-y) = 0.148 +/- 0.003 (s.e.m.) or E(B-V) = 0.202 +/- 0.004 (s.e.m.), where the errors refer to internal errors alone. With this reddening, [Fe/H] is derived from both m1 and hk, using H beta and b-y as the temperature index, with excellent agreement among the four approaches and a final weighted average of [Fe/H] = -0.17 +/- 0.02 (s.e.m.) for the cluster, on a scale where the Hyades has [Fe/H] = +0.12. When adjusted for the higher reddening estimate, the previous metallicity estimates from Washington photometry and from spectroscopy are now in agreement with the intermediate-band result. From comparisons to isochrones of appropriate metallicity, the cluster age and distance are determined as 0.9 +/- 0.1 Gyr and (m-M) = 12.2 +/- 0.1 or (m-M)_0 = 11.6 +/- 0.1. At this distance from the sun, Mel 71 has a galactocentric distance of 10.0 kpc on a scale where the sun is 8.5 kpc from the galactic center. Based upon its age, distance, and elemental abundances, Mel 71 appears to be a less populous analog to NGC 3960.Comment: Accepted for Astronomical Journal. 38 page latex file includes 11 figures and short version of data table. Full table will appear in online AJ or may be requested from author

    Validity of the Hadronic Freeze-Out Curve

    Full text link
    We analyze hadro-chemical freeze-out in central Pb+Pb collisions at CERN SPS energies, employing the hybrid version of UrQMD which models hadronization by the Cooper-Frye mechanism, and matches to a final hadron-resonance cascade. We fit the results both before and after the cascade stage using the Statistical Hadronization Model, to assess the effect of the cascade phase. We observe a strong effect on antibaryon yields except anti-{\Omega}, resulting in a shift in T and {\mu}_B. We discuss the implications for the freeze-out curve.Comment: 5 pages, 8 figures. To appear in the proceedings of Quark Matter 2011, the XXII International Conference on Ultrarelativistic Nucleus-Nucleus Collision

    Rubidium in Metal-Deficient Disk and Halo Stars

    Full text link
    We report the first extensive study of stellar Rb abundances. High-resolution spectra have been used to determine, or set upper limits on, the abundances of this heavy element and the associated elements Y, Zr, and Ba in 44 dwarfs and giants with metallicities spanning the range -2.0 <[Fe/H] < 0.0. In metal-deficient stars Rb is systematically overabundant relative to Fe; we find an average [Rb/Fe] of +0.21 for the 32 stars with [Fe/H] < -0.5 and measured Rb. This behavior contrasts with that of Y, Zr, and Ba, which, with the exception of three new CH stars (HD 23439A and B and BD +5 3640), are consistently slightly deficient relative to Fe in the same stars; excluding the three CH stars, we find the stars with [Fe/H] < -0.5 have average [Y/Fe], [Zr/Fe], and [Ba/Fe] of --0.19 (24 stars), --0.12 (28 stars), and --0.06 (29 stars), respectively. The different behavior of Rb on the one hand and Y, Zr, and Ba on the other can be attributed in part to the fact that in the Sun and in these stars Rb has a large r-process component while Y, Zr, and Ba are mostly s-process elements with only small r-process components. In addition, the Rb s-process abundance is dependent on the neutron density at the s-processing site. Published observations of Rb in s-process enriched red giants indicate a higher neutron density in the metal-poor giants. These observations imply a higher s-process abundance for Rb in metal-poor stars. The calculated combination of the Rb r-process abundance, as estimated for the stellar Eu abundances, and the s-process abundance as estimated for red giants accounts satisfactorily for the observed run of [Rb/Fe] with [Fe/H].Comment: 23 pages, 5 tables, 7 figure

    The role of inhibitory feedback for information processing in thalamocortical circuits

    Get PDF
    The information transfer in the thalamus is blocked dynamically during sleep, in conjunction with the occurence of spindle waves. As the theoretical understanding of the mechanism remains incomplete, we analyze two modeling approaches for a recent experiment by Le Masson {\sl et al}. on the thalamocortical loop. In a first step, we use a conductance-based neuron model to reproduce the experiment computationally. In a second step, we model the same system by using an extended Hindmarsh-Rose model, and compare the results with the conductance-based model. In the framework of both models, we investigate the influence of inhibitory feedback on the information transfer in a typical thalamocortical oscillator. We find that our extended Hindmarsh-Rose neuron model, which is computationally less costly and thus siutable for large-scale simulations, reproduces the experiment better than the conductance-based model. Further, in agreement with the experiment of Le Masson {\sl et al}., inhibitory feedback leads to stable self-sustained oscillations which mask the incoming input, and thereby reduce the information transfer significantly.Comment: 16 pages, 15eps figures included. To appear in Physical Review
    • …
    corecore