12,246 research outputs found

    Method of improving contact bonds in silicon integrated circuits

    Get PDF
    Fabrication method produces stable and reliable metallic systems for interconnections, contact pads, and bonded leads in silicon planar integrated circuits. The method is based on substrate isolation of the interconnection metal from the contact pad and bonded wire

    XPS characterization of silver electrodes and catalyst for oxygen reduction

    Get PDF
    The combined analysis of the silver GDE using an ex-situ surface sensitive technique (XPS) and in-situ electrochemical measurements (EIS, CV) show that the performance of the silver GDE is significantly influenced by the degree of degradation of the electrodes, e. g., the reduction of the active surface due to the decomposition of the PTFE. These findings indicate a different degree of decomposition of the PTFE on the on the GDE

    Incommensurate dynamics of resonant breathers in Josephson junction ladders

    Full text link
    We present theoretical and experimental studies of resonant localized resistive states in a Josephson junction ladder. These complex breather states are obtained by tuning the breather frequency into the upper band of linear electromagnetic oscillations of the ladder. Their prominent feature is the appearance of resonant steps in the current-voltage (I-V) characteristics. We have found the resonant breather-like states displaying incommensurate dynamics. Numerical simulations show that these incommensurate resonant breathers persist for very low values of damping. Qualitatively similar incommensurate breather states are observed in experiments performed with Nb-based Josephson ladders. We explain the appearance of these states with the help of resonance-induced hysteresis features in the I-V dependence.Comment: 5 pages, 6 figure

    Parallels between the dynamics at the noise-perturbed onset of chaos in logistic maps and the dynamics of glass formation

    Full text link
    We develop the characterization of the dynamics at the noise-perturbed edge of chaos in logistic maps in terms of the quantities normally used to describe glassy properties in structural glass formers. Following the recognition [Phys. Lett. \textbf{A 328}, 467 (2004)] that the dynamics at this critical attractor exhibits analogies with that observed in thermal systems close to vitrification, we determine the modifications that take place with decreasing noise amplitude in ensemble and time averaged correlations and in diffusivity. We corroborate explicitly the occurrence of two-step relaxation, aging with its characteristic scaling property, and subdiffusion and arrest for this system. We also discuss features that appear to be specific of the map.Comment: Revised version with substantial improvements. Revtex, 8 pages, 11 figure

    Magnetic, electronic and vibrational properties of metal and fluorinated metal phthalocyanines

    Get PDF
    The magnetic and electronic properties of metal phthalocyanines (MPc) and fluorinated metal phthalocyanines (F16_{16}MPc) are studied by means of spin density functional theory (SDFT). Several metals (M) such as Ca, all first d-row transition metals and Ag are investigated. By considering different open shell transition metals it is possible to tune the electronic properties of MPc, in particular the electronic molecular gap and total magnetic moment. Besides assigning the structural and electronic properties of MPc and F16_{16}MPc, the vibrational modes analysis of the ScPc\textendash ZnPc series have been studied and correlated to experimental measurements when available.Comment: 28 pages (preprint style), several figure

    Sierpinski signal generates 1/fα1/f^\alpha spectra

    Full text link
    We investigate the row sum of the binary pattern generated by the Sierpinski automaton: Interpreted as a time series we calculate the power spectrum of this Sierpinski signal analytically and obtain a unique rugged fine structure with underlying power law decay with an exponent of approximately 1.15. Despite the simplicity of the model, it can serve as a model for 1/fα1/f^\alpha spectra in a certain class of experimental and natural systems like catalytic reactions and mollusc patterns.Comment: 4 pages (4 figs included). Accepted for publication in Physical Review

    Deep learning based pulse shape discrimination for germanium detectors

    Full text link
    Experiments searching for rare processes like neutrinoless double beta decay heavily rely on the identification of background events to reduce their background level and increase their sensitivity. We present a novel machine learning based method to recognize one of the most abundant classes of background events in these experiments. By combining a neural network for feature extraction with a smaller classification network, our method can be trained with only a small number of labeled events. To validate our method, we use signals from a broad-energy germanium detector irradiated with a 228^{228}Th gamma source. We find that it matches the performance of state-of-the-art algorithms commonly used for this detector type. However, it requires less tuning and calibration and shows potential to identify certain types of background events missed by other methods.Comment: Published in Eur. Phys. J. C. 9 pages, 10 figures, 3 table

    Parametric Feedback Resonance in Chaotic Systems

    Get PDF
    If one changes the control parameter of a chaotic system proportionally to the distance between an arbitrary point on the strange attractor and the actual trajectory, the lifetime Ď„ of the most stable unstable periodic orbit in the vicinity of this point starts to diverge with a power law. The volume in parameter space where Ď„ becomes infinite is finite and from its nonfractal boundaries one can determine directly the local Liapunov exponents. The experimental applicability of the method is demonstrated for two coupled diode resonators
    • …
    corecore