83 research outputs found

    Physical Activity Comparison Between Body Sides in Hemiparetic Patients Using Wearable Motion Sensors in Free-Living and Therapy: A Case Series

    Get PDF
    Background: Physical activity (PA) is essential in stroke rehabilitation of hemiparetic patients to avoid health risks, and moderate to vigorous PA could promote patients' recovery. However, PA assessments are limited to clinical environments. Little is known about PA in unguided free-living. Wearable sensors could reveal patients' PA during rehabilitation, and day-long long-term measurements over several weeks might reveal recovery trends of affected and less-affected body sides.Methods: We investigated PA in an observation study during outpatient rehabilitation in a day-care center. PA of affected and less-affected body sides, including upper and lower limbs were derived using wearable motion sensors. In this analysis we focused on PA during free-living and clinician guided therapies, and investigated differences between body-sides. Linear regressions were used to estimate metabolic equivalents for each limb at comparable scale. Non-parametric statistics were derived to quantify PA differences between body sides.Results: We analyzed 102 full-day movement data recordings from eleven hemiparetic patients during individual rehabilitation periods up to 79 days. The comparison between free-living and clinician guided therapy showed on average 16.1 % higher PA in the affected arm during therapy and 5.3 % higher PA in the affected leg during therapy. Average differences between free-living and therapy in the less-affected side were below 4.5 %.Conclusion: We analyzed PA of patients with a hemiparesis in two distinct rehabilitation settings, including free-living and clinician guided therapies over several weeks and compared MET values of affected and less-affected body sides. In particular, we investigated PA using individual regression models for each limb. We demonstrated that wearable motion sensors provide insights in patient's PA during rehabilitation. Although, no clear PA trends were found, our analysis showed patients' tendency to sedentary behavior, confirming previous lab study results. Our PA analysis approach could be used beyond clinical rehabilitation to devise personalized patient and limb-specific exercise recommendations in future remote rehabilitation

    Effect of brain-computer interface training based on non-invasive electroencephalography using motor imagery on functional recovery after stroke - a systematic review and meta-analysis.

    Get PDF
    Background: Training with brain-computer interface (BCI) technology in the rehabilitation of patients after a stroke is rapidly developing. Numerous RCT investigated the effects of BCI training (BCIT) on recovery of motor and brain function in patients after stroke. Methods: A systematic literature search was performed in Medline, IEEE Xplore Digital Library, Cochrane library, and Embase in July 2018 and was repeated in March 2019. RCT or controlled clinical trials that included BCIT for improving motor and brain recovery in patients after a stroke were identified. Data were meta-analysed using the random-effects model. Standardized mean difference (SMD) with 95% confidence (95%CI) and 95% prediction interval (95%PI) were calculated. A meta-regression was performed to evaluate the effects of covariates on the pooled effect-size. Results: In total, 14 studies, including 362 patients after ischemic and hemorrhagic stroke (cortical, subcortical, 121 females; mean age 53.0+/- 5.8; mean time since stroke onset 15.7+/- 18.2 months) were included. Main motor recovery outcome measure used was the Fugl-Meyer Assessment. Quantitative analysis showed that a BCI training compared to conventional therapy alone in patients after stroke was effective with an SMD of 0.39 (95%CI: 0.17 to 0.62; 95%PI of 0.13 to 0.66) for motor function recovery of the upper extremity. An SMD of 0.41 (95%CI: - 0.29 to 1.12) for motor function recovery of the lower extremity was found. BCI training enhanced brain function recovery with an SMD of 1.11 (95%CI: 0.64 to 1.59; 95%PI ranging from 0.33 to 1.89). Covariates such as training duration, impairment level of the upper extremity, and the combination of both did not show significant effects on the overall pooled estimate. Conclusion: This meta-analysis showed evidence that BCI training added to conventional therapy may enhance motor functioning of the upper extremity and brain function recovery in patients after a stroke. We recommend a standardised evaluation of motor imagery ability of included patients and the assessment of brain function recovery should consider neuropsychological aspects (attention, concentration). Further influencing factors on motor recovery due to BCI technology might consider factors such as age, lesion type and location, quality of performance of motor imagery, or neuropsychological aspects

    Intervention Platform for Action Observation and Motor Imagery Training After Stroke: Usability Test

    Get PDF
    Action observation (AO) and motor imagery (MI) are considered as promising therapeutic approaches in the rehabilitation of patients after a stroke (PaS). Observing and mentally rehearsing motor movements stimulate the motor system in the brain and result in a positive effect on movement execution. To support patients in the early rehabilitation phase after a stroke, ANIMATE, a digital health intervention platform was developed. The platform guides the user through 6 activities of daily living by observing and imagining the corresponding movements. We conducted a scenario-based usability test with 9 PaS at a rehabilitation centre to identify existing usability issues. PaS found the app easy to use and they could interact with it without problems. Although they judged the app as useful, they stated to be not willing to use the app on a regular basis. Including features for customising ANIMATE regarding the individual rehabilitation goals and needs of PaS, as well as personalisation could help in increasing the motivation to use and the benefits of the platform

    Motor Imagery Experiences and Use: Asking Patients after Stroke Where, When, What, Why, and How They Use Imagery: A Qualitative Investigation

    Get PDF
    Background. A framework on where, when, what, why, and how to use imagery from sports psychology was explored whether it can be applied in patients after stroke in their chronic stage. Methods. Eleven patients (ages 31–85, 3 females, 1.3–6.4 years after stroke) were interviewed. Semistructured interviews were conducted before and after a two-week MI intervention period with six MI sessions. Information was obtained regarding experiences and knowledge of MI, and the evaluation of an MI practical example. The coding scheme was based on the framework and a hierarchical categorisation. Results. Information regarding domains where, when, what, why, and how to use imagery was addressed. Patients imagined themselves as healthy individuals, did not focus on surroundings during MI practice,and reported to use positive imagery only. After MI training, patients became more flexible regarding their location and position during MI practice. Conclusions. MI became an automatic process, and patients did not need specific concentration and quietness as mentioned in the first interview. Patients recommended daily MI training and began to transfer MI to practice movements that were affected by the stroke. In contrast to sports, patients did not talk about how MI was triggered rather than how MI was designed

    A different point of view: the evaluation of motor imagery perspectives in patients with sensorimotor impairments in a longitudinal study

    Get PDF
    BACKGROUND: Motor imagery (MI) has been successfully applied in neurological rehabilitation. Little is known about the spontaneous selection of the MI perspectives in patients with sensorimotor impairments. What perspective is selected: internal (first-person view), or external (third-person view)? The aim was to evaluate the MI perspective preference in patients with sensorimotor impairments. METHODS: In a longitudinal study including four measurement sessions, 55 patients (25 stroke, 25 multiple sclerosis, 5 Parkinson’s disease; 25 females; mean age 58 ± 14 years) were included. MI ability and perspective preference in both visual and kinaesthetic imagery modalities were assessed using the Kinaesthetic and Visual Imagery Questionnaire-20 (KVIQ-20), the body rotation task (BRT), and mental chronometry (MC). Additionally, patients’ activity level was assessed. Descriptive analyses were performed regarding different age- ( 64), activity levels (inactive, partially active, active), and KVIQ-20 movement classifications (axial, proximal, distal, upper and lower limb). A mixed-effects model was used to investiage the relationship between the primary outcome (MI perspective: internal, external) with the explanatory variables age, MI modality (visual, kinaesthetic), movement type (axial, proximal, distal), activity levels and the different assessments (KVIQ-20, BRT, MC). RESULTS: Imagery modality was not a significant predictor of perspective preference. Over the four measurement sessions, patients tended to become more consistent in their perspective selection, however, time point was not a significant predictor. Movement type was a significant predictor: imagination of distal vs. axial and proximal vs. axial movements were both associated with preference for external perspective. Patients with increased physical activity level tend to use internal imagery, however, this effect was borderline not statistically significant. Age was neither a significant precictor. Regarding the MI assessments, the KVIQ- 20 score was a significant predictor. The patients with higher test scores tend to use the external perspective. CONCLUSION: It is recommended to evaluate the spontaneous MI perspective selection to design patient-specific MI training interventions. Distal movements (foot, finger) may be an indicator when evaluating the consistency of the MI perspective in patients with sensorimotor impairments. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12883-021-02266-w

    Comparison of embedded and added motor imagery training in patients after stroke: Results of a randomised controlled pilot trial

    Get PDF
    Copyright @ 2012 Schuster et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Motor imagery (MI) when combined with physiotherapy can offer functional benefits after stroke. Two MI integration strategies exist: added and embedded MI. Both approaches were compared when learning a complex motor task (MT): ‘Going down, laying on the floor, and getting up again’. Methods: Outpatients after first stroke participated in a single-blinded, randomised controlled trial with MI embedded into physiotherapy (EG1), MI added to physiotherapy (EG2), and a control group (CG). All groups participated in six physiotherapy sessions. Primary study outcome was time (sec) to perform the motor task at pre and post-intervention. Secondary outcomes: level of help needed, stages of MT-completion, independence, balance, fear of falling (FOF), MI ability. Data were collected four times: twice during one week baseline phase (BL, T0), following the two week intervention (T1), after a two week follow-up (FU). Analysis of variance was performed. Results: Thirty nine outpatients were included (12 females, age: 63.4 ± 10 years; time since stroke: 3.5 ± 2 years; 29 with an ischemic event). All were able to complete the motor task using the standardised 7-step procedure and reduced FOF at T0, T1, and FU. Times to perform the MT at baseline were 44.2 ± 22s, 64.6 ± 50s, and 118.3 ± 93s for EG1 (N = 13), EG2 (N = 12), and CG (N = 14). All groups showed significant improvement in time to complete the MT (p < 0.001) and degree of help needed to perform the task: minimal assistance to supervision (CG) and independent performance (EG1+2). No between group differences were found. Only EG1 demonstrated changes in MI ability over time with the visual indicator increasing from T0 to T1 and decreasing from T1 to FU. The kinaesthetic indicator increased from T1 to FU. Patients indicated to value the MI training and continued using MI for other difficult-to-perform tasks. Conclusions: Embedded or added MI training combined with physiotherapy seem to be feasible and benefi-cial to learn the MT with emphasis on getting up independently. Based on their baseline level CG had the highest potential to improve outcomes. A patient study with 35 patients per group could give a conclusive answer of a superior MI integration strategy.The research project was partially funded by the Gottfried und Julia Bangerter-Rhyner Foundation

    Feasibility and cost description of highly intensive rehabilitation involving new technologies in patients with post-acute stroke-a trial of the Swiss RehabTech Initiative

    Full text link
    BACKGROUND There is a need to provide highly repetitive and intensive therapy programs for patients after stroke to improve sensorimotor impairment. The employment of technology-assisted training may facilitate access to individualized rehabilitation of high intensity. The purpose of this study was to evaluate the safety and acceptance of a high-intensity technology-assisted training for patients after stroke in the subacute or chronic phase and to establish its feasibility for a subsequent randomized controlled trial. METHODS A longitudinal, multi-center, single-group study was conducted in four rehabilitation clinics. Patients participated in a high-intensity 4-week technology-assisted trainings consisting of 3 to 5 training days per week and at least 5 training sessions per day with a duration of 45 min each. Feasibility was evaluated by examining recruitment, intervention-related outcomes (adherence, subjectively perceived effort and effectiveness, adverse events), patient-related outcomes, and efficiency gains. Secondary outcomes focused on all three domains of the International Classification of Functioning Disability and Health. Data were analyzed and presented in a descriptive manner. RESULTS In total, 14 patients after stroke were included. Participants exercised between 12 and 21 days and received between 28 and 82 (mean 46 ± 15) technology-assisted trainings during the study period, which corresponded to 2 to 7 daily interventions. Treatment was safe. No serious adverse events were reported. Minor adverse events were related to tiredness and exertion. From baseline to the end of the intervention, patients improved in several functional performance assessments of the upper and lower extremities. The efficiency gains of the trainings amounted to 10% to 58%, in particular for training of the whole body and for walking training in severely impaired patients. CONCLUSIONS Highly intensive technology-assisted training appears to be feasible for in- and outpatients in the subacute or chronic phase after stroke. Further clinical trials are warranted in order to define the most comprehensive approach to highly intensive technology-assisted training and to investigate its efficacy in patients with neurological disorders. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03641651 at August 31st 2018

    Feasibility of cardiopulmonary exercise testing using a robotics-assisted tilt tabele in dependent-ambulatory stroke patients

    Get PDF
    BACKGROUND: We evaluated the feasibility of an augmented robotics-assisted tilt table (RATT) for incremental cardiopulmonary exercise testing (CPET) and exercise training in dependent-ambulatory stroke patients. METHODS: Stroke patients (Functional Ambulation Category ≤ 3) underwent familiarization, an incremental exercise test (IET) and a constant load test (CLT) on separate days. A RATT equipped with force sensors in the thigh cuffs, a work rate estimation algorithm and real-time visual feedback to guide the exercise work rate was used. Feasibility assessment considered technical feasibility, patient tolerability, and cardiopulmonary responsiveness. RESULTS: Eight patients (4 female) aged 58.3 ± 9.2 years (mean ± SD) were recruited and all completed the study. For IETs, peak oxygen uptake (V'O(2peak)), peak heart rate (HR(peak)) and peak work rate (WR(peak)) were 11.9 ± 4.0 ml/kg/min (45 % of predicted V'O(2max)), 117 ± 32 beats/min (72 % of predicted HR(max)) and 22.5 ± 13.0 W, respectively. Peak ratings of perceived exertion (RPE) were on the range "hard" to "very hard". All 8 patients reached their limit of functional capacity in terms of either their cardiopulmonary or neuromuscular performance. A ventilatory threshold (VT) was identified in 7 patients and a respiratory compensation point (RCP) in 6 patients: mean V'O(2) at VT and RCP was 8.9 and 10.7 ml/kg/min, respectively, which represent 75 % (VT) and 85 % (RCP) of mean V'O(2peak). Incremental CPET provided sufficient information to satisfy the responsiveness criteria and identification of key outcomes in all 8 patients. For CLTs, mean steady-state V'O(2) was 6.9 ml/kg/min (49 % of V'O(2) reserve), mean HR was 90 beats/min (56 % of HR(max)), RPEs were > 2, and all patients maintained the active work rate for 10 min: these values meet recommended intensity levels for bouts of training. CONCLUSIONS: The augmented RATT is deemed feasible for incremental cardiopulmonary exercise testing and exercise training in dependent-ambulatory stroke patients: the approach was found to be technically implementable, acceptable to the patients, and it showed substantial cardiopulmonary responsiveness. This work has clinical implications for patients with severe disability who otherwise are not able to be tested

    Zürich Image Monitoring: Studie über das Image der Region Zürich

    Full text link
    "Das Zürich Image Monitoring (ZIM) dient zur Messung des Images der Region Zürich bei der Bevölkerung im Kanton, in der Schweiz und im Ausland. Gemessen wurde das Image in den Aufgabenfeldern des Kantons und in weiteren standortrelevanten Themenfeldern. Das ZIM bietet ein wirklichkeitsgetreues Abbild der Meinungen und Einstellungen, welche die verschiedenen Zielgruppen haben. Es bietet eine Datenbasis für die Ableitung von Massnahmen durch die politischen Entscheidungsträgerinnen und Entscheidungsträger. Anlass für das Zürich Image Monitoring ist, dass das Image von grosser Bedeutung für die Region Zürich und für ihre Zielgruppen ist. Dies haben weltweit Standorte erkannt, die in direkter Konkurrenz zum Standort Zürich stehen. Sie schenken ihrem Image vermehrte Aufmerksamkeit. Um im internationalen Wettbewerb zu bestehen, ist daher die Kenntnis des eigenen Images von grosser Bedeutung. Kenntnis des eigenen Images ist für die Region Zürich als Standort wichtig. Hintergrund Zahlreiche Untersuchungen belegen die Bedeutung von Images für menschliche Entscheidungen. Ein Grund dafür ist die grosse Menge an Informationen, welche in der Wissens- und Informationsgesellschaft täglich anfällt. Images erfüllen hier die Funktion von mentalen Faustregeln, welche die Entscheidungsfindung erleichtern. Dies gilt auch für Entscheidungen, die eine Region betreffen, etwa die Standortwahl bei der Firmengründung oder bei der Entscheidung einer Familie zur Wohnsitznahme. Das Image beeinflusst die Entscheidung für oder wider einen Standort und die Zufriedenheit mit einem gewählten Standort. Der Erfolg eines Standorts hängt auch davon ab, welches Image er bei seinen Zielgruppen hat. Dabei spielen subjektive Einflussgrössen eine bedeutende Rolle. Es ist oft sogar weniger wichtig, welche Eigenschaften eine Region tatsächlich hat, sondern wie die Wahrnehmung dieser Eigenschaften ist. Der Auftrag dieser Studie bestand daher aus der Messung der imagerelevanten Wahrnehmungen bei den Zielgruppen des Kantons. Gemessen wurde die Wahrnehmung der Region Zürich aus allen relevanten Blickwinkeln." (Autorenreferat

    Interactive visuo-motor therapy system for stroke rehabilitation

    Get PDF
    We present a virtual reality (VR)-based motor neurorehabilitation system for stroke patients with upper limb paresis. It is based on two hypotheses: (1) observed actions correlated with self-generated or intended actions engage cortical motor observation, planning and execution areas ("mirror neurons”); (2) activation in damaged parts of motor cortex can be enhanced by viewing mirrored movements of non-paretic limbs. We postulate that our approach, applied during the acute post-stroke phase, facilitates motor re-learning and improves functional recovery. The patient controls a first-person view of virtual arms in tasks varying from simple (hitting objects) to complex (grasping and moving objects). The therapist adjusts weighting factors in the non-paretic limb to move the paretic virtual limb, thereby stimulating the mirror neuron system and optimizing patient motivation through graded task success. We present the system's neuroscientific background, technical details and preliminary result
    corecore