89 research outputs found

    The Fetal Allograft Revisited: Does the Study of an Ancient Invertebrate Species Shed Light on the Role of Natural Killer Cells at the Maternal-Fetal Interface?

    Get PDF
    Human pregnancy poses a fundamental immunological problem because the placenta and fetus are genetically different from the host mother. Classical transplantation theory has not provided a plausible solution to this problem. Study of naturally occurring allogeneic chimeras in the colonial marine invertebrate, Botryllus schlosseri, has yielded fresh insight into the primitive development of allorecognition, especially regarding the role of natural killer (NK) cells. Uterine NK cells have a unique phenotype that appears to parallel aspects of the NK-like cells in the allorecognition system of B. schlosseri. Most notably, both cell types recognize and reject "missing self" and both are involved in the generation of a common vascular system between two individuals. Chimeric combination in B. schlosseri results in vascular fusion between two individual colonies; uterine NK cells appear essential to the establishment of adequate maternal-fetal circulation. Since human uterine NK cells appear to de-emphasize primary immunological function, it is proposed that they may share the same evolutionary roots as the B. schlosseri allorecognition system rather than a primary origin in immunity

    The Fetal Allograft Revisited: Does the Study of an Ancient Invertebrate Species Shed Light on the Role of Natural Killer Cells at the Maternal-Fetal Interface?

    Get PDF
    Human pregnancy poses a fundamental immunological problem because the placenta and fetus are genetically different from the host mother. Classical transplantation theory has not provided a plausible solution to this problem. Study of naturally occurring allogeneic chimeras in the colonial marine invertebrate, Botryllus schlosseri, has yielded fresh insight into the primitive development of allorecognition, especially regarding the role of natural killer (NK) cells. Uterine NK cells have a unique phenotype that appears to parallel aspects of the NK-like cells in the allorecognition system of B. schlosseri. Most notably, both cell types recognize and reject “missing self” and both are involved in the generation of a common vascular system between two individuals. Chimeric combination in B. schlosseri results in vascular fusion between two individual colonies; uterine NK cells appear essential to the establishment of adequate maternal-fetal circulation. Since human uterine NK cells appear to de-emphasize primary immunological function, it is proposed that they may share the same evolutionary roots as the B. schlosseri allorecognition system rather than a primary origin in immunity

    Identification of novel small molecules that inhibit STAT3-dependent transcription and function

    Get PDF
    Activation of Signal Transducer and Activator of Transcription 3 (STAT3) has been linked to several processes that are critical for oncogenic transformation, cancer progression, cancer cell proliferation, survival, drug resistance and metastasis. Inhibition of STAT3 signaling has shown a striking ability to inhibit cancer cell growth and therefore, STAT3 has become a promising target for anti-cancer drug development. The aim of this study was to identify novel inhibitors of STAT-dependent gene transcription. A cellular reporter-based system for monitoring STAT3 transcriptional activity was developed which was suitable for high-throughput screening (Z’ = 0,8). This system was used to screen a library of 28,000 compounds (the ENAMINE Drug-Like Diversity Set). Following counter-screenings and toxicity studies, we identified four hit compounds that were subjected to detailed biological characterization. Of the four hits, KI16 stood out as the most promising compound, inhibiting STAT3 phosphorylation and transcriptional activity in response to IL6 stimulation. In silico docking studies showed that KI16 had favorable interactions with the STAT3 SH2 domain, however, no inhibitory activity could be observed in the STAT3 fluorescence polarization assay. KI16 inhibited cell viability preferentially in STAT3-dependent cell lines. Taken together, using a targeted, cell-based approach, novel inhibitors of STAT-driven transcriptional activity were discovered which are interesting leads to pursue further for the development of anti-cancer therapeutic agents

    Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer

    Get PDF
    Pancreatic cancer (PC) mobilizes myeloid cells from the bone marrow to the tumor where they promote tumor growth and proliferation. Cancer stem cells (CSCs) are a population of tumor cells that are responsible for tumor initiation. Aldehyde dehydrogenase-1 activity in PC identifies CSCs, and its activity has been correlated with poor overall prognosis in human PC. Myeloid cells have been shown to impact tumor stemness, but the impact of immunosuppressive tumor-infiltrating granulocytic and monocytic myeloid-derived suppressor cells (Mo-MDSC) on ALDH1(Bright) CSCs and epithelial to mesenchymal transition is not well understood. In this study, we demonstrate that Mo-MDSC (CD11b(+)/Gr1(+)/Ly6G(−)/Ly6C(hi)) significantly increase the frequency of ALDH1(Bright) CSCs in a mouse model of PC. Additionally, there was significant upregulation of genes associated with epithelial to mesenchymal transition. We also found that human PC converts CD14(+) peripheral blood monocytes into Mo-MDSC (CD14(+)/HLA-DR(low/−)) in vitro, and this transformation is dependent on the activation of the STAT3 pathway. In turn, these Mo-MDSC increase the frequency of ALDH1(Bright) CSCs and promote mesenchymal features of tumor cells. Finally, blockade of STAT3 activation reversed the increase in ALDH1(Bright) CSCs. These data suggest that the PC tumor microenvironment transforms monocytes to Mo-MDSC by STAT3 activation, and these cells increase the frequency of ALDH1(Bright) CSCs. Therefore, targeting STAT3 activation may be an effective therapeutic strategy in targeting CSCs in PC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00262-014-1527-x) contains supplementary material, which is available to authorized users

    FGF2 regulates melanocytes viability through the STAT3-transactivated PAX3 transcription

    Get PDF
    PAX3 (paired box 3) is known to have an important role in melanocyte development through modulation of microphthalmia-associated transcription factor transcription. Here we found that PAX3 transcriptional activity could be regulated through FGF2 (basic fibroblast growth factor)-STAT3 (signal transducer and activator of transcription 3) signaling in the pigment cells. To study its function in vivo, we have generated a transgenic mouse model expressing PAX3 driven by tyrosinase promoter in a tissue-specific fashion. These animals exhibit hyperpigmentation in the epidermis, evident in the skin color of their ears and tails. We showed that the darker skin color results from both increased melanocyte numbers and melanin synthesis. Together, our study delineated a novel pathway in the melanocyte lineage, linking FGF2-STAT3 signaling to increased PAX3 transcription. Moreover, our results suggest that this pathway might contribute to the regulation of melanocyte numbers and melanin levels, and thereby provide an alternative strategy to induce pigmentation

    Manifestations of Immune Privilege in the Human Reproductive Tract

    Get PDF
    Like other mucosal surfaces (e.g., the gastrointestinal tract, the respiratory tract), the human female reproductive tract acts as an initial barrier to foreign antigens. In this role, the epithelial surface and subepithelial immune cells must balance protection against pathogenic insults against harmful inflammatory reactions and acceptance of particular foreign antigens. Two common examples of these acceptable foreign antigens are the fetal allograft and human semen/sperm. Both are purposely deposited into the female genital tract and appropriate immunologic response to these non-self antigens is essential to the survival of the species. In light of the weight of this task, it is not surprising that multiple, redundant and overlapping mechanisms are involved. For instance, cells at the immunologic interface between self (female reproductive tract epithelium) and non-self (placental trophoblast cells or human sperm) express glycosylation patterns that mimic those on many metastatic cancer cells and successful pathogens. The cytokine/chemokine milieu at this interface is altered through endocrine and immunologic mechanisms to favor tolerance of non-self. The foreign cells themselves also play an integral role in their own immunologic acceptance, since sperm and placental trophoblast cells are unusual and unique in their antigen presenting molecule expression patterns. Here, we will discuss these and other mechanisms that allow the human female reproductive tract to perform this delicate and indispensible balancing act

    Increased STAT1 signaling in endocrine-resistant breast cancer

    Get PDF
    Funding: China Scholarship Council, University of Edinburgh, Scottish Funding Council and Breakthrough Breast Cancer.Proteomic profiling of the estrogen/tamoxifen-sensitive MCF-7 cell line and its partially sensitive (MCF-7/LCC1) and fully resistant (MCF-7/LCC9) variants was performed to identify modifiers of endocrine sensitivity in breast cancer. Analysis of the expression of 120 paired phosphorylated and non-phosphorylated epitopes in key oncogenic and tumor suppressor pathways revealed that STAT1 and several phosphorylated epitopes (phospho-STAT1(Tyr701) and phospho-STAT3(Ser727)) were differentially expressed between endocrine resistant and parental controls, confirmed by qRT-PCR and western blotting. The STAT1 inhibitor EGCG was a more effective inhibitor of the endocrine resistant MCF-7/LCC1 and MCF-7/LCC9 lines than parental MCF-7 cells, while STAT3 inhibitors Stattic and WP1066 were equally effective in endocrine-resistant and parental lines. The effects of the STAT inhibitors were additive, rather than synergistic, when tested in combination with tamoxifen in vitro. Expression of STAT1 and STAT3 were measured by quantitative immunofluorescence in invasive breast cancers and matched lymph nodes. When lymph node expression was compared to its paired primary breast cancer expression, there was greater expression of cytoplasmic STAT1 (∼3.1 fold), phospho-STAT3(Ser727) (∼1.8 fold), and STAT5 (∼1.5 fold) and nuclear phospho-STAT3(Ser727) (∼1.5 fold) in the nodes. Expression levels of STAT1 and STAT3 transcript were analysed in 550 breast cancers from publicly available gene expression datasets (GSE2990, GSE12093, GSE6532). When treatment with tamoxifen was considered, STAT1 gene expression was nearly predictive of distant metastasis-free survival (DMFS, log-rank p = 0.067), while STAT3 gene expression was predictive of DMFS (log-rank p<0.0001). Analysis of STAT1 and STAT3 protein expression in a series of 546 breast cancers also indicated that high expression of STAT3 protein was associated with improved survival (DMFS, p = 0.006). These results suggest that STAT signaling is important in endocrine resistance, and that STAT inhibitors may represent potential therapies in breast cancer, even in the resistant setting.Publisher PDFPeer reviewe
    corecore