22 research outputs found

    Identifizierung differenzierungsrelevanter zellulärer Gene, deren Expression durch HPV16E6 beeinflusst wird

    Get PDF
    Humane Papillomaviren sind an der Entstehung des Zervixkarzinoms beteiligt. Die Charakterisierung der viralen Genprodukte stellt einen wichtigen Weg dar, die Entstehung des Zervixkarzinoms zu verstehen. HPV16 gehört im Zusammenhang mit der Zervixkarzinogenese zu den Hoch-Risiko-HPV-Typen. Tumoren sind u.a. durch fehlende Differenzierung der Zellen gekennzeichnet. Durch Transfektion des viralen Onkoproteins HPV16E6 in humane primäre Keratinozyten kam es nach Zugabe der Differenzierungsfaktoren Kalzium und Serum zur Ausbildung differenzierungsresistenter Keratinozyten-Kolonien. Zielsetzung der vorliegenden Arbeit war es, genetische Veränderungen auf transkriptioneller Ebene mit Hilfe des "Differential Display of mRNA" und der c-DNA-Array-Technologie zu ermitteln, die dieser Differenzierungsresistenz zu Grunde liegen

    Cinnamic Acid Bornyl Ester Derivatives from Valeriana wallichii Exhibit Antileishmanial In Vivo Activity in Leishmania major-Infected BALB/c Mice

    Get PDF
    Human leishmaniasis covers a broad spectrum of clinical manifestations ranging from selfhealing cutaneous leishmaniasis to severe and lethal visceral leishmaniasis caused among other species by Leishmania major or Leishmania donovani, respectively. Some drug candidates are in clinical trials to substitute current therapies, which are facing emerging drugresistance accompanied with serious side effects. Here, two cinnamic acid bornyl ester derivatives (1 and 2) were assessed for their antileishmanial activity. Good selectivity and antileishmanial activity of bornyl 3-phenylpropanoate (2) in vitro prompted the antileishmanial assessment in vivo. For this purpose, BALB/c mice were infected with Leishmania major promastigotes and treated with three doses of 50 mg/kg/day of compound 2. The treatment prevented the characteristic swelling at the site of infection and correlated with reduced parasite burden. Transmitted light microscopy and transmission electron microscopy of Leishmania major promastigotes revealed that compounds 1 and 2 induce mitochondrial swelling. Subsequent studies on Leishmania major promastigotes showed the loss of mitochondrial transmembrane potential (ΔΨm) as a putative mode of action. As the cinnamic acid bornyl ester derivatives 1 and 2 had exhibited antileishmanial activity in vitro, and compound 2 in Leishmania major-infected BALB/c mice in vivo, they can be regarded as possible lead structures for the development of new antileishmanial therapeutic approaches

    Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210

    Get PDF
    Background Autophagy participates in innate immunity by eliminating intracellular pathogens. Consequently, numerous microorganisms have developed strategies to impair the autophagic machinery in phagocytes. In the current study, interactions between Leishmania major (L. m.) and the autophagic machinery of bone marrow-derived macrophages (BMDM) were analyzed. Methods BMDM were generated from BALB/c mice, and the cells were infected with L. m. promastigotes. Transmission electron microscopy (TEM) and electron tomography were used to investigate the ultrastructure of BMDM and the intracellular parasites. Affymetrix® chip analyses were conducted to identify autophagy-related messenger RNAs (mRNAs) and microRNAs (miRNAs). The protein expression levels of autophagy related 5 (ATG5), BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), cathepsin E (CTSE), mechanistic target of rapamycin (MTOR), microtubule-associated proteins 1A/1B light chain 3B (LC3B), and ubiquitin (UB) were investigated through western blot analyses. BMDM were transfected with specific small interfering RNAs (siRNAs) against autophagy-related genes and with mimics or inhibitors of autophagy-associated miRNAs. The infection rates of BMDM were determined by light microscopy after a parasite-specific staining. Results The experiments demonstrated autophagy induction in BMDM after in vitro infection with L. m.. The results suggested a putative MTOR phosphorylation-dependent counteracting mechanism in the early infection phase and indicated that intracellular amastigotes were cleared by autophagy in BMDM in the late infection phase. Transcriptomic analyses and specific downregulation of protein expression with siRNAs suggested there is an association between the infection-specific over expression of BNIP3, as well as CTSE, and the autophagic activity of BMDM. Transfection with mimics of mmu-miR-101c and mmu-miR-129-5p, as well as with an inhibitor of mmu-miR-210-5p, demonstrated direct effects of the respective miRNAs on parasite clearance in L. m.-infected BMDM. Furthermore, Affymetrix® chip analyses revealed a complex autophagy-related RNA network consisting of differentially expressed mRNAs and miRNAs in BMDM, which indicates high glycolytic and inflammatory activity in the host macrophages. Conclusions Autophagy in L. m.-infected host macrophages is a highly regulated cellular process at both the RNA level and the protein level. Autophagy has the potential to clear parasites from the host. The results obtained from experiments with murine host macrophages could be translated in the future to develop innovative and therapeutic antileishmanial strategies for human patients

    Anti-Schistosomal Activity of Cinnamic Acid Esters: Eugenyl

    Get PDF
    Bornyl caffeate (1) was previously isolated by us from Valeriana (V.) wallichii rhizomes and identified as an anti-leishmanial substance. Here, we screened a small compound library of synthesized derivatives 1–30 for activity against schistosomula of Schistosoma (S.) mansoni. Compound 1 did not show any anti-schistosomal activity. However, strong phenotypic changes, including the formation of vacuoles, degeneration and death were observed after in vitro treatment with compounds 23 (thymyl cinnamate) and 27 (eugenyl cinnamate). Electron microscopy analysis of the induced vacuoles in the dying parasites suggests that 23 and 27 interfere with autophagy

    Antileishmanial Lead Structures from Nature: Analysis of Structure-Activity Relationships of a Compound Library Derived from Caffeic Acid Bornyl Ester

    Get PDF
    Bioassay-guided fractionation of a chloroform extract of Valeriana wallichii (V. wallichii) rhizomes lead to the isolation and identification of caffeic acid bornyl ester (1) as the active component against Leishmania major (L. major) promastigotes (IC50 = 48.8 µM). To investigate the structure-activity relationship (SAR), a library of compounds based on 1 was synthesized and tested in vitro against L. major and L. donovani promastigotes, and L. major amastigotes. Cytotoxicity was determined using a murine J774.1 cell line and bone marrow derived macrophages (BMDM). Some compounds showed antileishmanial activity in the concentration range of pentamidine and miltefosine which are the standard drugs in use. In the L. major amastigote assay compounds 15, 19 and 20 showed good activity with relatively low cytotoxicity against BMDM, resulting in acceptable selectivity indices. Molecules with adjacent phenolic hydroxyl groups exhibited elevated cytotoxicity against murine cell lines J774.1 and BMDM. The Michael system seems not to be essential for antileishmanial activity. Based on the results compound 27 can be regarded as new lead structure for further structure optimizatio
    corecore