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1. Introduction

Destruction of bone and articular cartilage during pathogenesis of rheumatoid arthritis (RA)
is caused by increased activity of a huge panel of proteases, which are secreted by several
cell types of arthritic joint. Besides matrix metalloproteases (MMPs), the papain-like cysteine
proteases (clan CA, family C1) have been identified as proteases potentially involved in car‐
tilage and bone destruction as well as in immune response during inflammatory arthritis.
Several clinical studies demonstrated that expression and activity of different cysteine cathe‐
psins have been increased frequently in synovial membranes and fluids from RA patients.
However, the exact roles of papain-like cysteine proteases have not been fully understood
yet. Therefore, their contribution to joint inflammation and destruction has been investigat‐
ed by in vivo and in vitro experiments in the last decades of arthritis research. This chapter
focuses on cysteine cathepsins K, B, L, and S - the best-studied members of the papain-like
protease family in arthritic diseases - in order to understand better their impact on inflam‐
matory arthritis in respect to their collagenolytic activities as well as to their contributions to
immune response. Latest results about the impact of cysteine cathepsins in different animal
models for RA are discussed comprehensively. Furthermore, a short excursion to cathepsin
V (= cathepsin L2) - an exclusively human cathepsin L-like cysteine cathepsin - and its im‐
pact on autoimmune disease progression is included in this review. The chapter clarifies
that cathepsins K and S are attractive targets for the development of new highly specific an‐
ti-arthritis drugs.

© 2013 Schurigt; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Cysteine cathepsins

Cathepsins are a heterogeneous group of proteases. Originally, the name cathepsin was
used for proteases with the highest activity in a slightly acidic environment as found in the
lysosomes. The name cathepsin originates from greek “kathepsein” (= to digest). Today, the
cathepsin family consists of at least 15 members and can be subdivided by their catalytic
mechanism into three distinct groups: serine proteases (cathepsin A and G), aspartat pro‐
teases (cathepsin D and E), and cysteine proteases (cathepsins B, C, F, H, K, L, O, S, V, W,
and X). Most cathepsins reside in endosomal/lysosomal compartment and are thus termed
lysosomal cathepsins (except cathepsins E and G). Caused by this localization, cathepsins
were initially considered as intracellularly active enzymes responsible for the non-specific
bulk proteolysis in the acidic environment of the endosomal/lysosomal compartment, where
they degrade intracellular and endocytosed extracellular proteins. However, this view has
changed rapidly in the last years and there is a strong experimental evidence that cathepsins
have huge panel of highly specialized functions [1, 2]. The cysteine cathepsins are character‐
ized by the presence of a cysteine residue at their active site and are highly homologue to
papain - a cysteine protease isolated originally from papaya fruit (Carica papaya). Therefore
they are termed papain-like cysteine proteases and together with the parent protease papain
they are classified in clan CA family C1 in “MEROPS – the peptidase database” [3]. Cysteine
cathepsins are expressed by viruses, plants, primitive parasites, invertebrates, and verte‐
brates [4]. They play pivotal roles in chronic diseases (e.g. RA, cancer) as well as in infec‐
tious diseases (e.g. malaria, leishmaniasis) [2, 4, 5, 6]. Cysteine cathepsins are transported to
the lysosomes via a specific mannose-6-phosphate receptor pathway, which explains the pri‐
mary lysosomal localization [7]. Mature proteolytically active cathepsins are released after
activation by removal of the N-terminal propeptide at the low pH of the lysosomes. The pa‐
pain-like cysteine protease family contains both enzymes with endo- and exopeptidase ac‐
tivities. Cathepsin B is an endo- and an exopeptidase [3, 8]. It also acts as a peptidyl-
dipeptidase [9]. Cysteine cathepsins K, L (= L1), S, and V (= L2) are endopeptidases [3]. The
stability and activity of papain-like cysteine cathepsins depend on the acidic pH prevailing
in lysosomes [2]. The functions of these enzymes may be altered with changes in pH and
their cellular localization [2].

3. Cell types and tissues in arthritic joints

RA is an autoimmune disease with unknown etiology. The immune system of RA patients
produces autoantibodies against components of their own extracellular matrix (ECM) in dia‐
rthrodial synovial joints (e.g. against collagens) [10]. This effectively leads the immune sys‐
tem to attack and finally to destroy - together with synovium-/pannus-associated cells - the
articular cartilage and the bone in arthritic joints during disease progression. The diarthro‐
dial synovial joint consists of highly specialized connective tissues (bone, hyaline cartilage,
synovial tissue etc.) and a fibrous capsule (Figure 1). Bone is composed approximately to
70% of inorganic, mainly mineral compound called hydroxyapatite, 20% of organic material,
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mainly type I collagen, and 10% water [11]. Morphologically two types of bone can be dis‐
tinguished: porous trabecular bone, also known as spongy bone, and dense cortical bone, al‐
so known as compact bone. Osteoclasts are bone-demineralizing and -degrading cells,
which are also responsible for bone resorption and type I collagen degradation during nor‐
mal physiological bone turnover (Figure 1). They are large multinucleated cells that express
tartrate-resistant phosphatase (TRAP), calcitonin receptors, and cathepsin K [12]. Osteoclasts
are able to acidify an isolated area between the cell and bone matrix, which is named resorp‐
tion lacuna. Active acidification of bone by osteoclasts results in demineralization of bone,
solubilization of mineral components, and finally an uncovering/liberalization of matrix col‐
lagens. In addition, it provides an acidic environment for secreted cathepsin K for optimal
proteolytic activity. Bone resorption occurs at the contact site between the osteoclast and the
bone, the so called ruffled border. Minerals of bone are solubilized due to the secretion of
acids, which depends on the activity of carbonic anhydrase and proton pumps of osteo‐
clasts. The degradation of organic matrix of bone (mainly type I collagens) occurs probably
due to the activity of lysosomal cysteine proteases, other lysosomal hydrolases, and collage‐
nases of MMP family secreted by osteoclasts. So far cathepsins B, K, and L could also be de‐
tected in osteoclasts [13, 14, 15, 16, 17, 18]. Articular cartilage (= hyaline cartilage) covers
articulating bone surfaces in diarthrodial joints. Cartilage is composed of water (65 - 85%)
and a solid phase, consisting of 15 - 20% type II collagen, 3 - 10% large aggregating mole‐
cules of proteoglycan, which are called aggrecans, and various other types of collagen [19].
The synovial membrane (or synovium) is the soft tissue between the articular capsule and
the joint cavity of diarthrodial synovial joints. The word “synovium” is related to the word
“synovial” (= synovial fluid), which is the clear, viscid, lubricating fluid secreted by synovial
fibroblasts of synovial membrane (Figure 1). Continuous inflammation of synovium during
RA pathogenesis leads to membrane expansion by hyperproliferation of activated synovial
fibroblasts. Such arthritic synovial fibroblasts are infiltrated by mononuclear cells (e.g. T
helper (Th) cells, B cells, macrophages) and form finally, together with these infiltrates, the
so called invasive pannus tissue, which is characterized by an increased protease expression.

In advanced RA, arthritic synovial fibroblasts are the main source of destructive proteinases
(e.g. MMPs and cathepsins) mediating pannus invasion of bone and articular cartilage. Ad‐
ditionally pannus-infiltrating macrophages contribute after their activation to joint degrada‐
tion by increased cytokine and protease expression. Expression of cathepsins B, K, L, and S
by different cell types of synovium of RA patients was detected [20, 21, 22]. Professional an‐
tigen presenting cells (APC) in arthritic joints are dendritic cells, B cells, and macrophages.
Cathepsins B, L, and S contribute to antigen presentation in APCs [23]. Furthermore, B cells
are responsible for producing autoantibodies. Studies of Th cell-secreted cytokine spectrum
led to the classification of RA as a Th1-like disease [24]. This cell population, predominantly
producing gamma interferon (IFNγ) and interleukin-2 (IL-2), stimulates protease overex‐
pression in synovial fibroblasts and macrophages in pannus tissue. In contrast, Th2 cells,
predominantly producing IL-4 and IL-10, are rarely found in arthritic joints. Anyway, both
Th1 and Th2 cells can stimulate MMP expression in arthritic synovial fibroblasts by secre‐
tion of macrophage migration inhibitory factor [25]. Tumor necrosis factor alpha (TNFα) is
considered as the main proinflammatory cytokine in the pathogenesis of RA [26]. It is pro‐
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duced by Th1 cells, synovial monocytes/macrophages, synovial fibroblasts, lymphocytes,
and osteoblasts. TNFα can stimulate osteoclast formation in pannus tissue. Furthermore,
TNFα appears to influence the distribution of osteoclast precursor cells in the body by in‐
creasing their influx from the bone marrow into synovium. TNFα also had a stimulating ef‐
fect on secretion of procathepsin B by human arthritic synovial fibroblasts [27].

Figure 1. Organization of a diarthrodial synovial joint

4. Type I and type II collagens

One hallmark of human RA is the proteolytic degradation of collagens in ECM of affected
joints. The ECM is the material between the cells in tissues of multicellular organisms. It
provides structural framework of bone and articular cartilage of joints and is responsible for
their resistance to pressure, torsion, and tension. Articular cartilage and bone contain speci‐
alized ECM components (collagens, elastin, proteoglycans etc.), which give diarthrodial
joints strength and structural qualities. Collagens - the structural main components in joints
- are extracellular matrix molecules used by cells for structural integrity and with a variety
of other functions. About 28 different collagens have been identified in mammals and hu‐
mans [28]. The typical mature collagen molecule consists of three single collagen polypep‐
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tide chains, so called alpha (α) chains, which coil into a helical molecule [28]. The different
types of collagen are formed from a combination of more than 45 distinct collagen α poly‐
peptide chains [28]. In the triple helical regions of collagens, termed Col domains, every
third animo acid is glycine (gly) organized in as repeating peptide triplets of gly-X-Y [28]. In
this triplet, X often is proline, and Y frequently is 4-hydroxyproline [28]. Col domains of
each α chain are flanked by non-helical (non-gly-X-Y) regions, termed NC domains [28, 29].
In contrast, the telopeptides - the NC domains - of collagens have not the repeating gly-X-Y
structure and do not adopt triple helical conformation. Telopeptides account for 2% of the
collagen α chain and are essential for fibril formation [29]. Triple helical molecules aggregate
spontaneously and form covalent cross-links among themselves to form collagen fibrils [29].
Both, the Col and the NC domains of collagen molecules are immunogenic [30]. Bone organ‐
ic matrix contains predominantly type I collagen (90%). Type II collagen is the molecular
principal compound of mammalian and human articular collagen, but additionally colla‐
gens III, VI, IX, X, XI, XII, and XIV contribute to composition of ECM of cartilage [31]. Type I
and type II collagens, together with the other extracellular matrix molecules, are degraded
during physiological processes (e.g. morphogenesis, growth, wound healing, physiological
bone turnover) but also during pathological processes (e.g. cancer, RA).

5. Collagenolytic activities of papain-like cysteine proteases

Native collagens are highly resistant to proteolytic degradation due to their rigid and com‐
pact structure. However, hydrolysis of non-helical collagen telopeptides by proteases leads
to depolymerization of the fibrillar collagen network, whereas cleavage within the triple he‐
lix results in depolymerization and denaturation of native triple helical collagen molecule.
Only few proteases with collagenase activity have the capacity to initiate the cleavage of na‐
tive triple helical collagens. Collagenases are enzymes that catalyze the hydrolysis of pep‐
tide bonds in triple helical regions of collagen. In contrast, denatured collagens (= gelatin)
lost the triple helical structure and they are readily degraded by multiple proteinases (= ge‐
latinases). Gelatinases are proteolytic enzymes hydrolyzing denatured collagen (= gelatin).

The exact mechanisms of collagen degradation have been not completely understood yet.
Historically, MMPs have been considered as the main players of ECM degradation. This
was justified by their membrane association or extracellular localization, their neutral pH
optimum, and their ability to degrade structural extracellular proteins such as collagens,
elastin, and proteoglycans. MMPs are members of a subfamily of proteases, which includes
collagenases (MMP-1, -8, -13, and -18), stromelysins (MMP-3, -7, -10, -11, and -12), gelatinas‐
es (MMP-2 and -9), and membrane type MMPs (MT-MMPs: MMP-14, -15, -16, and -17). The
collagenases among the MMPs are able to initiate degradation of native triple helical colla‐
gens. However, results of various studies have suggested that also other proteases must de‐
grade ECM components. Especially, the papain-like cysteine cathepsins were supposed to
contribute to collagen cleavage that occurs at acidic pH, in particular in collagen cleavage
mediated by osteoclasts.
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The investigation of tissue-degrading enzyme expression in synovial membrane, synovial
fluid, and serum of RA patients is of particular interest in arthritis research, because eleva‐
tions of analysed protease imply an impact on RA pathogenesis. The contribution of papain-
like cysteine proteases to bone and cartilage destruction in RA was supposed, because
several clinical studies showed that cysteine cathepsins were increasingly expressed and
highly active in clinical samples from RA patients. Elevated levels of cysteine cathepsins B,
L, S were detected in synovial fluids and in different cell types from patients with RA [32,
33, 34, 35]. Furthermore, it was shown, that cathepsins B and L were expressed in the syno‐
vial membrane shortly after symptom onset what implies that the potential for joint destruc‐
tion exists at a very early stage in the course of the disease [36]. An enhanced transcription
of cathepsin B in synovial cells from RA patients was detected [37]. Cathepsin B and L activ‐
ities were detected in synovial membranes of RA patients [38]. Macrophages abundant in
chronic RA subchondral bone lesions were characterized by high cathepsin L expression
and an involvement of this protease in bone and cartilage destruction was supposed [39].
Furthermore, it was suggested that cathepsins B and L expressed by chondrocytes are in‐
volved in cartilage destruction during arthritis [40]. Cathepsin K was elevated in the serum
of RA patients [41].

However, first direct experimental evidence supporting the role of papain-like cysteine pro‐
teases in bone resorption was provided by showing that specific inhibitors for different cys‐
teine cathepsins and broad spectrum cysteine cathepsin inhibitors decreased bone
resorption by osteoclasts [14, 16, 42, 43, 44]. The inhibition of lysosomes with cathepsin K-
specific inhibitors led to an accumulation of undigested material within the endosomal/lyso‐
somal compartment of osteoclasts [45]. Additionally, invasiveness of synovial fibroblasts
from RA patients into cartilage both in vitro and in vivo in the SCID mouse coimplantation
model was reduced after treatment with ribozymes cleaving specifically cathepsin L mRNA
and therefore decreasing the synthesis of this cysteine protease [46].

Finally, in vitro analyses of collagenolytic activities helped to clarify the contribution of these
individual cysteine cathepsins to physiological and pathological cartilage and bone degrada‐
tion. Cleavage of soluble type I and type II collagen in vitro has been reported for cathepsins
B, K, L, S, and V [47, 48, 49, 51, 59, 63] (Table 1). However, it is notable that latter proteases
have only gelatinolytic activities and additionally contribute to unspecific cleavage of telo‐
peptides of collagens [50]. Native triple helical type I and type II collagens are resistant to
proteolysis by cathepsins B, L, S, and V. Although these cathepsins have not the capacity to
cleave triple helical collagen, they attack their telopeptides, which are involved in intra- and
intermolecular links [29]. This attack by cysteine cathepsin - similar to MMP-9 highly ex‐
pressed in osteoclast - may destabilize the fibril collagen helices and therefore may contrib‐
ute to joint destruction. Cathepsin L is the cysteine protease hitherto considered to have the
highest telopeptidase and gelatinase activity among the papain-like cysteine proteases. De‐
spite its own limited proteolytic activity, cathepsin B is able to proteolytically activate colla‐
genase that mediates triple helical collagen cleavage [64].
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Protease

Proteolytic activities Cartilage- and bone-related

phenotypes of protease-

deficient mice

Investigation of protease-

deficient mice in animal

models for RA
Collagenase

activity

Gelatinase

activity

Cathepsin B No Yes [47, 48, 49] No phenotypes reported

Antigen-induced arthritis:
[personal communication by author]

No differences to arthritic

wild-type mice

Cathepsin K Yes [50] Yes [51]

Osteopetrotic phenotype in long

bones, trabelular and cortical

bone mass is increased, higher

brittleness of bone [52, 53, 54, 55, 56]

hTNFtg mice: [57]

Reduction of osteoclast-

dependent cartilage and

bone destruction

Adjuvant arthritis: [58]

Reduction in pro-

inflammatory Th17 cells

number by suppression of

toll-like receptor 9 signaling

in dendritic cells is

responsible for attenuated

arthritis

Cathepsin L No Yes [47, 48, 49, 51, 59]
Decrease in trabecular bone

volume [60]

Antigen-induced arthritis: [61]

Impairment of Th cell

response, reconstitution by

expression of human

cathepsin V in thymus

Cathepsin S No Yes [47] No phenotypes reported

Collagen-induced arthritis:
[62]

Milder arthritis by

impairment of antigen-

presentation

Cathepsin V No Yes [63] Not expressed in mice

Table 1. Summary of proteolytic activities of individual cysteine cathepsins, the resulting phenotypes of protease-
deficient mice, and the clinical outcome of these mice in animal models for human RA

However, only cathepsin K is able to cleave native type I collagen within the triple helical
domain [50] (Table 1). This unique proteolytic activity is caused by the formation of an oli‐
gomeric complex between cathepsin K molecules and extracellular matrix-resident glycosa‐
minoglycans [65]. However, in the absence of this complex, monomeric cathepsin K exhibits
only the telopeptide cleavage capability and lacks this collagenase activity like the other pa‐
pain-like cysteine cathepsins [50, 66]. To control the collagenase activity of cathepsin K by
disruption of the glycosaminoglycan/cathepsin K complex or by prevention of its formation
may open possibilities to develop new drugs to reduce bone destruction in RA. Cathepsin K
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was originally identified as an osteoclast-specific lysosomal protease. It is highly expressed
and active in osteoclasts associated with bone surface and is secreted in resorption lacuna
[15, 67]. The importance of cathepsin K for bone resorption has been demonstrated by cathe‐
psin K inhibition studies with cathepsin K antisense oligodeoxynucleotides [68]. It has been
shown that cathepsin K is capable to cleave type II collagen within the helical region of N-
terminus, a unique capacity of this protease among papain-like cysteine proteases [69].
Therefore, inhibition of cathepsin K has been suggested to also play a pivotal role in protec‐
tion of cartilage degradation during RA. Furthermore, cathepsin K is a critical protease in
synovial fibroblast-mediated collagen degradation [70]. In contrast to MMPs with neutral or
near-neutral pH optimum, cathepsin K is able to degrade the organic matrix in an acidic mi‐
croenviroment. This acidic “collagenase” cleaves both triple-helical type I and type I colla‐
gen, the major structural components of the extracellular matrix of articular cartilage and
bone. In contrast to collagenases (MMPs -1, -8, -13, -18), which cleave collagen creating typi‐
cal ¼ C-terminal and ¾ N-terminal fragment, cathepsin K can cleave triple helical type I col‐
lagen at multiple sites resulting in a more complex degradation pattern [50, 69].

6. Phenotypes of cysteine cathepsin-deficient mice

Phenotyping is one of the first analytical steps after generation of gene knock out mice. Car‐
tilage and bone phenotypes would be expected in cysteine cathepsin-deficient mice, if these
proteases would contribute to physiological cartilage and bone turnover. Mice deficient in
cysteine cathepsins B, K, L, and S were generated in the last years [52, 53, 54, 55, 62, 71, 72].
Cathepsin V is expressed exclusively in humans. No phenotypes of the bone or articular car‐
tilage have been reported so far for cathepsin B-, and S-deficient mice (Table 1). In contrast,
the bone phenotype in cathepsin K-deficient mice is very strong [52, 53, 54, 55, 56] (Table 1).
Therefore, cathepsin K is possibly the most important proteolytic enzyme of osteoclasts in
the papain-like cysteine protease family. Cathepsin K-deficient mice partially reflect the
phenotype of pycnodysostosis, a human hereditary disease [52, 73]. The name "pycnodysos‐
tosis" appropriately describes this disease as formation of abnormally dense (greek: pykno)
bone. The late 19th century French poster artist Henri de Toulouse-Lautrec (1864 - 1901) was
the most prominent pycnodysostosis patient [74]. Therefore, this disease is sometimes refer‐
red as Toulouse-Lautrec syndrome. Cathepsin K mutations in patients with pycnodysostosis
result in a total loss or inactivity of cathepsin K, which causes abnormal degradation of bone
matrix proteins such as type I collagen [75]. Pycnodysostosis is characterized by a variable
clinical appearance that includes short stature, open fontanelles, partial or total aplasia of
the terminal phalanges, a predisposition to bone fractures, osteopetrosis, and an increased
roentgenographic density of the entire skeleton [73, 74, 76, 77]. Cathepsin K-deficient mice
are phenotypically characterized by an osteopetrotic phenotype in long bones - especially in
distal femur - and lumbar vertebrae [52, 53, 54, 55, 56]. The trabecular and cortical bone
mass is increased in cathepsin K-deficient mice compared with their wild-type littermates
[55]. The bones of cathepsin K-deficient mice show a higher brittleness [53]. However, the
osteopetrosis of pycnodysostosis patients seems to be more severe than that of cathepsin K-
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deficient mice and some of the skeletal changes seen in pycnodysostosis patients, such as re‐
tardation, phalangeal deformities, or delayed suture closure in the skull, have not been
reported in cathepsin K-deficient mice [52, 53, 54, 55]. However, other clinical symptoms of
pycnodysostosis as for instance the accumulation of undigested collagen fibrils in lysosomes
of osteoclasts and fibroblasts are described for cathepsin K-deficient mice [45, 70, 73]. The
lack of cathepsin K decreases the rate of osteoclast-mediated bone resorption but does not
completely inhibit this process [52, 55]. The number of osteoclasts was significantly in‐
creased in trabecular bone of cathepsin K-deficient mice compared to wild-type controls,
probably to compensate the inefficient bone degradation [54]. A cartilage phenotype of cath‐
epsin K-deficient mice has not been reported. Furthermore, and in strong contrast to cathe‐
psin K-deficient mice, cathepsin L knock out mice revealed a decrease in trabecular bone
volume [60] (Table 1). This reduction in bone mass may suggest that cathepsin L is involved
in endochondral ossification [60]. This effect was reduced after ostrogen withdrawal by
ovariectomy [60].

7. Animal models of RA

The use of animal models allows in vivo investigation of single aspects, as for instance in‐
flammation, antigen presentation, and joint destruction during the complex pathogenesis of
inflammatory arthritis. Additionally, animal models have been applied to evaluate potential
anti-arthritis drugs for clinical use. RA models are relatively easy to use, produce reproduci‐
ble results, and are of short duration [78, 79, 80, 81]. They feature many of the clinical symp‐
toms of the human disease. The most important difference between animal models of RA
and human RA is the disease progression rate. It is much faster in animal models of RA than
in the human disease. Therefore, animal models of inflammatory arthritis are characterized
primarily by an acute inflammatory response and only a weak chronification of disease.
Anyway, investigation of inflammatory arthritis with test animals is important for the un‐
derstanding of specific aspects in pathogenesis of human RA. Especially the investigation of
cysteine cathepsin-deficient or -transgenic mice in such models as well as the application of
specific inhibitors in arthritic animals enables the understanding of the contribution of indi‐
vidual proteases to the disease outcome. Animal models for human RA can be classified into
induced and spontaneous models [82]. It is important to select the right animal model for
RA to address a specific scientific question. The repertory of animal models of RA includes
among others adjuvant arthritis, antigen-induced arthritis (AIA), collagen-induced arthritis
(CIA), and human TNF-transgenic (hTNFtg) mice [78, 80, 81, 82]. Each of these animal mod‐
els only reflects a few of the clinical aspects of the human disease. Therefore, the exact
knowledge of all clinical aspects, disease progression rate, and the contribution of individu‐
al cell types to inflamed joints to disease outcome is fundamental to understand the in vivo
functions of investigated proteases or the in vivo effects of applied cysteine cathepsin-specif‐
ic drugs. The latter is especially important because papain-like cysteine proteases not only
directly contribute to ECM degradation in arthritic joints but also to local and systemic im‐
mune response. Several cysteine cathepsins are involved in antigen presentation and inflam‐
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matory pathways [23, 58]. First experimental results in animal models for RA with cysteine
cathepsin-deficient and -transgenic mice have been helpful to understand the impact of
these proteases on joint inflammation and destruction in vivo.

TNFα plays a central role in pathophysiology of RA [26, 83]. This was confirmed by the de‐
velopment of transgenic mice that overexpress human TNFα [81, 84]. The phenotype of
hTNFtg mice validated the theory that TNFα is the apex of pro-inflammatory cascade in RA.
In this simple mouse model for RA the investigators utilized a targeting vector that con‐
tained a genomic fragment encoding the entire human TNFα gene in which the ARE-con‐
taining 3`UTR was replaced with the 3`UTR from β-globin gene [81, 84]. This mutation
resulted in a chronic overexpression of TNFα mRNA. hTNFtg mice develop spontaneously
an erosive symmetrical polyarthritis with histopathological features of inflammation and
bone destruction similar to human RA [81, 84]. Early symptoms of disease in hTNFtg mice
after spontaneous onset are infiltration with polymorphonuclear cells, lymphocytes, and
synovial hyperplasia [81]. Pannus formation, destruction of fibrous tissue, as well as mas‐
sive articular cartilage and subchondral bone destruction are additional hallmarks of the late
stage of arthritis in hTNFtg mice [81, 84]. The bone surface of hTNFtg mice is covered by
multinucleated TRAP+ osteoclasts, interposed between the bone surface and the “erosive”
front of the synovium [81, 84]. The process of bone destruction is mediated exclusively by
osteoclasts because c fos-deficient hTNFtg mice completely lacking osteoclasts were fully
protected against bone destruction [85]. This absence of osteoclasts alters TNF-mediated ar‐
thritis from a destructive to a nondestructive arthritis [85]. Taken together, the hTNFtg
mouse model is especially interesting to investigate the impact of an individual protease to
osteoclast-dependent bone resorption during inflammatory arthritis. The investigation of
cathepsin K-deficient hTNFtg mice for instance confirmed that cathepsin K is a protease se‐
creted by osteoclasts that has a very high impact to bone destruction [57] (Table 1). Unex‐
pectedly it was also demonstrated that cathepsin K is important but not essential for
osteoclast-dependent bone resorption in hTNFtg mouse model for RA [57]. The bone de‐
struction in cathepsin K-deficient hTNFtg mice was only reduced about 50% [57]. Therefore,
other proteases, especially MMPs might contribute to subchondral bone destruction process.
The MMP activity detected in cathepsin K-deficient osteoclasts might be a compensatory
mechanism [57]. Consequently, strategies to prevent arthritic osteoclast-dependent bone de‐
struction cannot be restricted to a selective inhibiton of cathepsin K activity. The detected
impairment of synovium-derived osteoclast formation might be partially responsible for the
significant reduction in the area of bone erosion in cathepsin K-deficient hTNFtg mice [57].
A clinical case of the onset of an erosive psoriatic arthritis in a “cathepsin K activity-defi‐
cient” pycnodysostosis patient was recently reported [86]. This “experiment of nature” sup‐
ported the idea that cathepsin K in humans is also not essential for osteoclast-mediated bone
degradation during inflammatory arthritis [86]. Nevertheless, cathepsin K plays a pivotal
role in arthritis. Transgenic mice, overexpressing cathepsin K, become spontaneously sus‐
ceptible to inflammatory arthritis characterized by synovitis, synovial hyperplasia, fibrosis,
and subsequently in degradation of articular cartilage and bone [87].
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Rat adjuvant arthritis is an experimental model of polyarthritis that has been widely used
for preclinical drug testing. In rats it is induced by a single dosis of Freund`s adjuvant, con‐
taining Mycobacterium tuberculosis [79, 80]. Arthritis develops in around 10 - 45 days after in‐
duction and generally subsides after one month [80]. The hallmarks of this model are a
reliable onset of robust polyarticular inflammation with infiltration of joints with mono- and
polymorphonuclear cells, pannus formation, and marked bone resorption [79, 80]. The carti‐
lage destruction is relatively mild in comparison to the observed inflammation and bone de‐
struction [79]. The mechanism of arthritis development after immunization with complete
Freund`s adjuvant is unknown. Activation of APCs was supposed to contribute to arthritis
onset. The enzymatic activity of cathepsin B correlated positively with the severity of joint
destruction and inflammation in rat adjuvant-induced arthritis [88]. Oral administration of a
vinyl sulfone cysteine cathepsin-specific inhibitor reduced the signs of inflammation and tis‐
sue destruction in this animal model probably by direct local effects and attenuation of
MHC-dependent antigen-presentation [88]. Oral administration of fluoromethyl ketones in
rats with adjuvant-induced arthritis inhibited at least cysteine cathepsins B and L, and re‐
sulted in a reduction of articular cartilage and bone destruction [89]. Adjuvant arthritis can
also be investigated in mice. Induction of adjuvant arthritis in cathepsin K-deficient mice
demonstrated clearly that cathepsin K plays, besides its role in osteoclast-mediated bone de‐
struction, a critical role in toll-like receptor 9 signaling in dendritic cells [58]. The suppres‐
sion of this signal pathway by cathepsin K deficiency resulted in attenuated induction of
pro-inflammatory Th17 cells, without affecting the antigen-presenting ability of dendritic
cells [58] (Table 1). In addition, pharmacological inhibition using cathepsin K-specific inhibi‐
tors resulted in the reduction of inflammation in joints [58]. Furthermore, cathepsin B and L
activities were strongly increased in chondrocytes and cells of the inflamed synovium of
rats, which developed an arthritis induced by the synthetic adjuvant CP20961 [90].

Collagen-induced arthritis (CIA) is an experimental autoimmune disease that can be elicited
in susceptible strains of rodents (rat und mouse) and non-human primates by immunization
with type II collagen of several species the major constituent of articular cartilage [78, 80].
Susceptibility to CIA is restricted to mouse strains with MHC class II types I-Aq and I-Ar [78,
80]. The immune response to type II collagen is characterized by the stimulation of collagen-
specific T cells and the production of high titers of collagen-specific antibody [78]. Hall‐
marks of polyarthritic CIA are synovitis, infiltration of joint with polymorphonuclear and
mononuclear cells, pannus formation, erosion of cartilage and bone, and fibrosis [78, 80]. In
mice, immunization with bovine, chick or rat type II collagens usually leads to a relatively
acute form of arthritis [80]. Papain-like cysteine proteases contribute to disease progression
in the CIA arthritis model. Cathepsin K expression is upregulated in murine CIA [91]. Phar‐
macological inhibition of the proteolytic activity of cathepsin K in murine CIA reduced the
destruction of bone and cartilage within arthritic joints [92]. Additionally, the severity of
CIA in DBA/1 mice was decreased by fluoroketone inhibitors, which inhibit specifically
cathepsin B and L [89]. Cathepsin S-deficient mice develop a diminished CIA probably
caused by influences of cathepsin S to late stages of Li degradation in APCs and influencing
the peptide repertoire displayed by MHC class II molecules [62] (Table 1). Therapeutic ap‐
plications of a highly selective and oral available cathepsin S inhibitor reduced significantly
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the disease score in arthritic CIA mice [93]. The development of further new cathepsin S-
specific inhibitors may be useful in treatment of human RA and other autoimmune diseases.
Interestingly, the development of highly selective activity-based probes to monitor cathe‐
psin S activity and their successful application in murine zymosam-induced arthritis was re‐
ported [94]. These active site probes open the possibility to investigate the in vivo roles of
cathepsin S in CIA and other RA models more precisely and to monitor the bioavailability of
cathepsin S-specific inhibitors in therapeutical trials with arthritic animals.

The antigen-induced arthritis (AIA) can be induced in mice, rats, and rabbits following intra-ar‐
ticular injection of a protein antigen (e.g. methylated bovine serum albumin) into the knee joint
of animals that have been previously immunized with the same antigen [80]. The histopatho‐
logical appearance of AIA has similarities to human RA, including synovial lining layer hyper‐
plasia, perivascular infiltration with lymphocytes and plasma cells, lymphoid follicles, pannus
formation, and cartilage erosion [80]. Bone erosion in this arthritis model is relatively week [61,
95]. The AIA is strict Th cell-dependent as shown with depletion experiments with anti CD4 an‐
tibodies [96]. Depletion of CD25+ regulatory T cell resulted in an increase of disease severity
[95]. In contrast to RA, the AIA is a monoarticular disease that affects only treated joints [80].
Anyway, susceptibility to AIA is not MHC class II-restricted and this makes this model useful
for studies with transgenic and gene-deficient mice on different genetic backgrounds [80]. So
far the investigated cysteine cathepsins play no or unexpected roles in this RA model. At least
the contribution of these proteases to antigen presentation and therefore an alteration in disease
outcome was expected because Th1/Th2 balance was influenced by cathepsin L- and B-specific
inhibitors applied in Leishmania-infected and ovalbumine-immunized mice [43, 97, 98, 99].
However, cathepsin B-deficient mice did not show any difference in disease outcome com‐
pared to wild-type mice (unpublished data by author) (Table 1). In addition, no significant up‐
regulation at mRNA level of cathepsin B was detected during time course of AIA [100]. The
severity of AIA was decreased in cathepsin L-deficient mice [61]. Clinical outcome in this mice
was characterized by decreased inflammation, reduction in cartilage and bone destruction, as
well as diminished cellular and humoral immune responsiveness [61] (Tabel 1). Both, Th1 and
Th2 cell responses were impaired in arthritic cathepsin L-deficient mice [61]. Interestingly this
effect was not caused by local activity of cathepsin L in the arthritic joint, which correlated with
only slight local upregulation of cathepsin L in arthritic knee joints in the acute phase and no in‐
crease in expression during chronic phase of AIA [100]. In fact the attenuation of AIA in cathe‐
psin L-deficient mice was caused by an impaired positive selection of conventional disease
promoting CD4+ Th cells in thymus and a unchanged development of the protective CD25+/
FOXP3+ regulatory T cells compartment [61, 101]. Experimentally it could be further clearly
demonstrated that transgenic expression of human cathepsin L-like protease cathepsin V in
thymic epithelium of cathepsin L-deficient mice reconstituted all parameters by normalization
of the ratio of regulatory to conventional T cells [61, 101] (Tabel 1). Therefore, human cathepsin
V - the syntenic orthologous proteases of mouse cathepsin L - is clearly involved in Th cell posi‐
tive selection in the thymus. This influence of cathepsin V on Th cell compartment development
might further explain that genetic polymorphisms of cathepsin V are associated with human
autoimmune diseases such as diabetes type 1 and myasthenia gravis [102]. In future studies it
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would be highly attractive to investigate whether cathepsin V polymorphisms are associated
with the incidence and clinical outcomes in patients with RA.

As described above cysteine cathepsin-specific inhibitors were applied successfully in several
animal models of human RA [58, 88, 89, 92, 93]. The reduction of disease severity was observed.
The proteolytic activities of cysteine cathepsins, which contribute directly to joint destruction
by collagen degradation as well as indirectly by modulation of the immune response, were in‐
hibited. However, the exact understanding of the contribution of cysteine cathepsins to im‐
mune  response  will  be  very  critically  to  avoid  severe  side  effects  in  patients.  Potential
consequences of systemic application of cathepsin S- and K-specific inhibitors for the outcome
of other human chronic and infectious diseases must be critically discussed. Cell type-specific
delivery of inhibitors should become a key aspect in arthritis research in future. Osteoclast-spe‐
cific delivery of cathepsin K-specific inhibitors for instance could be an interesting strategy to
avoid joint destruction by inhibition of the collagenolytic activities without interfering with
systemic immune response.

8. Summary

Several papain-like cysteine cathepsins are able to cleave type I and type II collagen and
therefore contribute to direct joint destruction. Additionally, they play roles in antigen pre‐
sentation and development of Th cell compartment. Especially cathepsin K with its unique
collagenase activity has a great impact to bone degradation in inflammatory arthritis and
plays a crucial role in inflammatory processes. In addition, cathepsin S is a key player in an‐
tigen-presentation during arthritis. At least cathepsin K and S are attractive targets for the
development of new anti-arthritic drugs.
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